88 resultados para Scaling-up
Resumo:
compatible with the usual nonlocal model governed by surface tension that results from a macroscopic description. To explore this discrepancy, we exhaustively analyze numerical integrations of a phase-field model with dichotomic columnar disorder. We find that two distinct behaviors are possible depending on the capillary contrast between the two values of disorder. In a high-contrast case, where interface evolution is mainly dominated by the disorder, an inherent anomalous scaling is always observed. Moreover, in agreement with experimental work, the interface motion has to be described through a local model. On the other hand, in a lower-contrast case, the interface is dominated by interfacial tension and can be well modeled by a nonlocal model. We have studied both spontaneous and forced-flow imbibition situations, giving a complete set of scaling exponents in each case, as well as a comparison to the experimental results.
Resumo:
The scaling properties of the rough liquid-air interface formed in the spontaneous imbibition of a viscous liquid by a model porous medium are found to be very sensitive to the magnitude of the pressure difference applied at the liquid inlet. Interface fluctuations change from obeying intrinsic anomalous scaling at large negative pressure differences, to being super-rough with the same dynamic exponent z¿3 at less negative pressure differences, to finally obeying ordinary Family-Vicsek scaling with z¿2 at large positive pressure differences. This rich scenario reflects the relative importance on different length scales of capillary and permeability disorder, and the role of surface tension and viscous pressure in damping interface fluctuations.
Resumo:
We derive analytical expressions for the excitation energy of the isoscalar giant monopole and quadrupole resonances in finite nuclei, by using the scaling method and the extended ThomasFermi approach to relativistic mean-field theory. We study the ability of several nonlinear σω parameter sets of common use in reproducing the experimental data. For monopole oscillations the calculations agree better with experiment when the nuclear matter incompressibility of the relativistic interaction lies in the range 220260 MeV. The breathing-mode energies of the scaling method compare satisfactorily with those obtained in relativistic RPA and time-dependent mean-field calculations. For quadrupole oscillations, all the analyzed nonlinear parameter sets reproduce the empirical trends reasonably well.
Resumo:
By using the scaling method we derive the virial theorem for the relativistic mean field model of nuclei treated in the ThomasFermi approach. The ThomasFermi solutions statisfy the stability condition against scaling. We apply the formalism to study the excitation energy of the breathing mode in finite nuclei with several relativistic parameter sets of common use.
Resumo:
We calculate the chemical potential ¿0 and the effective mass m*/m3 of one 3He impurity in liquid 4He. First a variational wave function including two- and three-particle dynamical correlations is adopted. Triplet correlations bring the computed values of ¿0 very close to the experimental results. The variational estimate of m*/m3 includes also backflow correlations between the 3He atom and the particles in the medium. Different approximations for the three-particle distribution function give almost the same values for m*/m3. The variational approach underestimates m*/m3 by ~10% at all of the considered densities. Correlated-basis perturbation theory is then used to improve the wave function to include backflow around the particles of the medium. The perturbative series built up with one-phonon states only is summed up to infinite order and gives results very close to the variational ones. All the perturbative diagrams with two independent phonons have then been summed to compute m*/m3. Their contribution depends to some extent on the form used for the three-particle distribution function. When the scaling approximation is adopted, a reasonable agreement with the experimental results is achieved.
Resumo:
A general formalism is set up to analyze the response of an arbitrary solid elastic body to an arbitrary metric gravitational wave (GW) perturbation, which fully displays the details of the interaction antenna wave. The formalism is applied to the spherical detector, whose sensitivity parameters are thereby scrutinized. A multimode transfer function is defined to study the amplitude sensitivity, and absorption cross sections are calculated for a general metric theory of GW physics. Their scaling properties are shown to be independent of the underlying theory, with interesting consequences for future detector design. The GW incidence direction deconvolution problem is also discussed, always within the context of a general metric theory of the gravitational field.
Resumo:
The effective diffusion coefficient for the overdamped Brownian motion in a tilted periodic potential is calculated in closed analytical form. Universality classes and scaling properties for weak thermal noise are identified near the threshold tilt where deterministic running solutions set in. In this regime the diffusion may be greatly enhanced, as compared to free thermal diffusion with, for a realistic experimental setup, an enhancement of up to 14 orders of magnitude.
Resumo:
We study theoretical and empirical aspects of the mean exit time (MET) of financial time series. The theoretical modeling is done within the framework of continuous time random walk. We empirically verify that the mean exit time follows a quadratic scaling law and it has associated a prefactor which is specific to the analyzed stock. We perform a series of statistical tests to determine which kind of correlation are responsible for this specificity. The main contribution is associated with the autocorrelation property of stock returns. We introduce and solve analytically both two-state and three-state Markov chain models. The analytical results obtained with the two-state Markov chain model allows us to obtain a data collapse of the 20 measured MET profiles in a single master curve.
Resumo:
An exact analytical expression for the effective diffusion coefficient of an overdamped Brownian particle in a tilted periodic potential is derived for arbitrary potentials and arbitrary strengths of the thermal noise. Near the critical tilt (threshold of deterministic running solutions) a scaling behavior for weak thermal noise is revealed and various universality classes are identified. In comparison with the bare (potential-free) thermal diffusion, the effective diffusion coefficient in a critically tilted periodic potential may be, in principle, arbitrarily enhanced. For a realistic experimental setup, an enhancement by 14 orders of magnitude is predicted so that thermal diffusion should be observable on a macroscopic scale at room temperature.
Resumo:
There is little information concerning the long term outcome of patients with gastro-oesophageal reflux disease (GORD). Thus 109 patients with reflux symptoms (33 with erosive oesophagitis) with a diagnosis of GORD after clinical evaluation and oesophageal testing were studied. All patients were treated with a stepwise approach: (a) lifestyle changes were suggested aimed at reducing reflux and antacids and the prokinetic agent domperidone were prescribed; (b) H2 blockers were added after two months when symptoms persisted; (c) anti-reflux surgery was indicated when there was no response to (b). Treatment was adjusted to maintain clinical remission during follow up. Long term treatment need was defined as minor when conservative measures sufficed for proper control, and as major if daily H2 blockers or surgery were required. The results showed that one third of the patients each had initial therapeutic need (a), (b), and (c). Of 103 patients available for follow up at three years and 89 at six years, respective therapeutic needs were minor in 52% and 55% and major in 48% and 45%. Eighty per cent of patients in (a), 67% in (b), and 17% in (c) required only conservative measures at six years. A decreasing lower oesophageal sphincter pressure (p < 0.001), radiological reflux (p = 0.028), and erosive oesophagitis (p = 0.031), but not initial clinical scores, were independent predictors of major therapeutic need as shown by multivariate analysis. The long term outcome of GORD is better than previously perceived.
Resumo:
The kinetics and microstructure of solid-phase crystallization under continuous heating conditions and random distribution of nuclei are analyzed. An Arrhenius temperature dependence is assumed for both nucleation and growth rates. Under these circumstances, the system has a scaling law such that the behavior of the scaled system is independent of the heating rate. Hence, the kinetics and microstructure obtained at different heating rates differ only in time and length scaling factors. Concerning the kinetics, it is shown that the extended volume evolves with time according to αex = [exp(κCt′)]m+1, where t′ is the dimensionless time. This scaled solution not only represents a significant simplification of the system description, it also provides new tools for its analysis. For instance, it has been possible to find an analytical dependence of the final average grain size on kinetic parameters. Concerning the microstructure, the existence of a length scaling factor has allowed the grain-size distribution to be numerically calculated as a function of the kinetic parameters
Exploring the rate-limiting steps in visual phototransduction recovery by bottom-up kinetic modeling
Resumo:
Phototransduction in vertebrate photoreceptor cells represents a paradigm of signaling pathways mediated by G-protein-coupled receptors (GPCRs), which share common modules linking the initiation of the cascade to the final response of the cell. In this work, we focused on the recovery phase of the visual photoresponse, which is comprised of several interacting mechanisms. We employed current biochemical knowledge to investigate the response mechanisms of a comprehensive model of the visual phototransduction pathway. In particular, we have improved the model by implementing a more detailed representation of the recoverin (Rec)-mediated calcium feedback on rhodopsin kinase and including a dynamic arrestin (Arr) oligomerization mechanism. The model was successfully employed to investigate the rate limiting steps in the recovery of the rod photoreceptor cell after illumination. Simulation of experimental conditions in which the expression levels of rhodospin kinase (RK), of the regulator of the G-protein signaling (RGS), of Arr and of Rec were altered individually or in combination revealed severe kinetic constraints to the dynamics of the overall network. Our simulations confirm that RGS-mediated effector shutdown is the rate-limiting step in the recovery of the photoreceptor and show that the dynamic formation and dissociation of Arr homodimers and homotetramers at different light intensities significantly affect the timing of rhodopsin shutdown. The transition of Arr from its oligomeric storage forms to its monomeric form serves to temper its availability in the functional state. Our results may explain the puzzling evidence that overexpressing RK does not influence the saturation time of rod cells at bright light stimuli. The approach presented here could be extended to the study of other GPCR signaling pathways.