84 resultados para SMALL BOWEL
Resumo:
A controlled perturbation is introduced into the Saffman-Taylor flow problem by adding a gradient to the gap of a Hele-Shaw cell. The stability of the single-finger steady state was found to be strongly affected by such a perturbation. Compared with patterns in a standard Hele-Shaw cell, the single Saffman-Taylor finger was stabilized or destabilized according to the sign of the gap gradient. While a linear stability analysis shows that this perturbation should have a negligible effect on the early-stage pattern formation, the experimental data indicate that the characteristic length for the initial breakup of a flat interface has been changed by the perturbation.
Resumo:
Atribution as a function of the time are analyzed and this study leads to a deeper knowledge of the microscopic processes involved in the magnetic relaxation
Resumo:
In this article we present a phenomenological model which simulates very well the mag¿ netic relaxation behavior experimentally observed in small magnetic grains and single domain particles. In this model, the occurrence of quantum tunneling of magnetization below a certain temperature is taken into account. Experimental results for different materials are presented to illustrate the most important behavior deduced from our model
Resumo:
Monte Carlo simulations of a model for gamma-Fe2O3 (maghemite) single particle of spherical shape are presented aiming at the elucidation of the specific role played by the finite size and the surface on the anomalous magnetic behavior observed in small particle systems at low temperature. The influence of the finite-size effects on the equilibrium properties of extensive magnitudes, field coolings, and hysteresis loops is studied and compared to the results for periodic boundaries. It is shown that for the smallest sizes the thermal demagnetization of the surface completely dominates the magnetization while the behavior of the core is similar to that of the periodic boundary case, independently of D. The change in shape of the hysteresis loops with D demonstrates that the reversal mode is strongly influenced by the presence of broken links and disorder at the surface
Resumo:
We study the effects of the magnetic field on the relaxation of the magnetization of smallmonodomain noninteracting particles with random orientations and distribution of anisotropyconstants. Starting from a master equation, we build up an expression for the time dependence of themagnetization which takes into account thermal activation only over barriers separating energyminima, which, in our model, can be computed exactly from analytical expressions. Numericalcalculations of the relaxation curves for different distribution widths, and under different magneticfields H and temperatures T, have been performed. We show how a T ln(t/t0) scaling of the curves,at different T and for a given H, can be carried out after proper normalization of the data to theequilibrium magnetization. The resulting master curves are shown to be closely related to what wecall effective energy barrier distributions, which, in our model, can be computed exactly fromanalytical expressions. The concept of effective distribution serves us as a basis for finding a scalingvariable to scale relaxation curves at different H and a given T, thus showing that the fielddependence of energy barriers can be also extracted from relaxation measurements.
Resumo:
The interactions of tiny objects with their environments are dominated by thermal fluctuations. Guided by theory and assisted by new micromanipulation tools, scientists have begun to study such interactions in detail.
Resumo:
We present an imaginary-time path-integral study of the problem of quantum decay of a metastable state of a uniaxial magnetic particle placed in the magnetic field at an arbitrary angle. Our findings agree with earlier results of Zaslavskii obtained by mapping the spin Hamiltonian onto a particle Hamiltonian. In the limit of low barrier, weak dependence of the decay rate on the angle is found, except for the field which is almost normal to the anisotropy axis, where the rate is sharply peaked, and for the field approaching the parallel orientation, where the rate rapidly goes to zero. This distinct angular dependence, together with the dependence of the rate on the field strength, provides an independent test for macroscopic spin tunneling.
Resumo:
The paper reports a detailed experimental study on magnetic relaxation of natural horse-spleen ferritin. ac susceptibility measurements performed on three samples of different concentration show that dipole-dipole interactions between uncompensated moments play no significant role. Furthermore, the distribution of relaxation times in these samples has been obtained from a scaling of experimental X" data, obtained at different frequencies. The average uncompensated magnetic moment per protein is compatible with a disordered arrangement of atomic spins throughout the core, rather than with surface disorder. The observed field dependence of the blocking temperature suggests that magnetic relaxation is faster at zero field than at intermediate field values. This is confirmed by the fact that the magnetic viscosity peaks at zero field, too. Using the distribution of relaxation times obtained independently, we show that these results cannot be explained in terms of classical relaxation theory. The most plausible explanation of these results is the existence, near zero field, of resonant magnetic tunneling between magnetic states of opposite orientation, which are thermally populated.
Resumo:
We critically discuss relaxation experiments in magnetic systems that can be characterized in terms of an energy barrier distribution, showing that proper normalization of the relaxation data is needed whenever curves corresponding to different temperatures are to be compared. We show how these normalization factors can be obtained from experimental data by using the Tln (t/t0) scaling method without making any assumptions about the nature of the energy barrier distribution. The validity of the procedure is tested using a ferrofluid of Fe3O4 particles.
Resumo:
Background and aims: Increased pancreatitis associated protein (PAP) mRNA has been reported in active inflammatory bowel disease (IBD). The aims of the current study were to characterise PAP production in IBD and the effects of PAP on inflammation. Patients and methods: Serum PAP levels were determined in healthy controls (n¿=¿29), inflammatory controls (n¿=¿14), and IBD patients (n¿=¿171). Ex vivo PAP secretion in intestinal tissue was measured in 56 IBD patients and 13 healthy controls. Cellular origin of PAP was determined by immunohistochemistry. The effects of exogenous PAP on nuclear factor ¿B (NF¿B) activation, proinflammatory cytokine production, and endothelial adhesion molecule expression were also analysed ex vivo. Results: Patients with active IBD had increased serum PAP levels compared with controls, and these levels correlated with clinical and endoscopic disease severity. Ex vivo intestinal PAP synthesis was increased in active IBD and correlated with endoscopic and histological severity of inflammatory lesions. PAP localised to colonic Paneth cells. Incubation of mucosa from active Crohn¿s disease with PAP dose dependently reduced proinflammatory cytokines secretion. PAP prevented TNF-¿ induced NF¿B activation in monocytic, epithelial, and endothelial cells and reduced proinflammatory cytokine mRNA levels and adhesion molecule expression. Conclusions: PAP is synthesised by Paneth cells and is overexpressed in colonic tissue of active IBD. PAP inhibits NF¿B activation and downregulates cytokine production and adhesion molecule expression in inflamed tissue. It may represent an anti-inflammatory mechanism and new therapeutic strategy in IBD.
Resumo:
Objectives: To develop European League Against Rheumatism (EULAR) recommendations for the management of small and medium vessel vasculitis. Methods: An expert group (consisting of 10 rheumatologists, 3 nephrologists, 2 immunologists, 2 internists representing 8 European countries and the USA, a clinical epidemiologist and a representative from a drug regulatory agency) identified 10 topics for a systematic literature search using a modified Delphi technique. In accordance with standardised EULAR operating procedures, recommendations were derived for the management of small and medium vessel vasculitis. In the absence of evidence, recommendations were formulated on the basis of a consensus opinion. Results: In all, 15 recommendations were made for the management of small and medium vessel vasculitis. The strength of recommendations was restricted by low quality of evidence and by EULAR standardised operating procedures. Conclusions: On the basis of evidence and expert consensus, recommendations have been made for the evaluation, investigation, treatment and monitoring of patients with small and medium vessel vasculitis for use in everyday clinical practice.
Resumo:
The activities of aspartate and alanine transaminase, serine dehydratase, arginase, glutamate dehydrogenase, adenylate deaminase and glutamine synthetase were determined in the stomach and small intestine of developing rats. Despite the common embryonic origin of the intestine and stomach, their enzymes showed quite different activity levels and patterns of development, depending on their roles. Most enzyme activities were low during late intrauterine life and after birth, attaining adult levels with the change of diet at weaning. No arginase activity was found in the stomach and no changes were detected in adenylate deaminase in the stomach or intestine throughout the period studied. Alanine transaminase, serine dehydratase and, to some extent, glutamine synthetase levels, significantly higher in late intrauterine life, decreased after birth, suggesting that the foetal stomach has a transient ability to handle amino acids.