106 resultados para SINGLE-CRYSTALLINE
Resumo:
[cat] En aquest treball caracteritzem les solucions puntuals de jocs cooperatius d'utilitat transferible que compleixen selecció del core i monotonia agregada. També mostrem que aquestes dues propietats són compatibles amb la individualitat racional, la propietat del jugador fals i la propietat de simetria. Finalment, caracteritzem les solucions puntuals que compleixen les cinc propietats a l'hora.
Resumo:
Exact formulas for the effective eigenvalue characterizing the initial decay of intensity correlation functions are given in terms of stationary moments of the intensity. Spontaneous emission noise and nonwhite pump noise are considered. Our results are discussed in connection with earlier calculations, simulations, and experimental results for single-mode dye lasers, two-mode inhomogeneously broadened lasers, and two-mode dye ring lasers. The effective eigenvalue is seen to depend sensitively on noise characteristics and symmetry properties of the system. In particular, the effective eigenvalue associated with cross correlations of two-mode lasers is seen to vanish in the absence of pump noise as a consequence of detailed balance. In the presence of pump noise, the vanishing of this eigenvalue requires equal pump parameters for the two modes and statistical independence of spontaneous emission noise acting on each mode.
Resumo:
Recent measurements of electron escape from a nonequilibrium charged quantum dot are interpreted within a two-dimensional (2D) separable model. The confining potential is derived from 3D self-consistent Poisson-Thomas-Fermi calculations. It is found that the sequence of decay lifetimes provides a sensitive test of the confining potential and its dependence on electron occupation
Resumo:
Bulk and single-particle properties of hot hyperonic matter are studied within the Brueckner-Hartree-Fock approximation extended to finite temperature. The bare interaction in the nucleon sector is the Argonne V18 potential supplemented with an effective three-body force to reproduce the saturating properties of nuclear matter. The modern Nijmegen NSC97e potential is employed for the hyperon-nucleon and hyperon-hyperon interactions. The effect of temperature on the in-medium effective interaction is found to be, in general, very small and the single-particle potentials differ by at most 25% for temperatures in the range from 0 to 60 MeV. The bulk properties of infinite matter of baryons, either nuclear isospin symmetric or a Beta-stable composition that includes a nonzero fraction of hyperons, are obtained. It is found that the presence of hyperons can modify the thermodynamical properties of the system in a non-negligible way.
Resumo:
The distribution of single-particle strength in nuclear matter is calculated for a realistic nucleon-nucleon interaction. The influence of the short-range repulsion and the tensor component of the nuclear force on the spectral functions is to move approximately 13% of the total strength for all single-particle states beyond 100 MeV into the particle domain. This result is related to the abundantly observed quenching phenomena in nuclei which include the reduction of spectroscopic factors observed in (e,ep) reactions and the missing strength in low energy response functions.
Resumo:
s out to be more relevant than naively expected, is retained. Finally we analyze different aspects of the total cross section relevant to the measurement of new physics through the effective couplings. The above analysis also applies to top antiquark production in a straightforward way.
Resumo:
The density of states of a Bose-condensed gas confined in a harmonic trap is investigated. The predictions of Bogoliubov theory are compared with those of Hartree-Fock theory and of the hydrodynamic model. We show that the Hartree-Fock scheme provides an excellent description of the excitation spectrum in a wide range of energy, revealing a major role played by single-particle excitations in these confined systems. The crossover from the hydrodynamic regime, holding at low energies, to the independent-particle regime is explicitly explored by studying the frequency of the surface mode as a function of their angular momentum. The applicability of the semiclassical approximation for the excited states is also discussed. We show that the semiclassical approach provides simple and accurate formulas for the density of states and the quantum depletion of the condensate.
Resumo:
Stress-strain trajectories associated with pseudoelastic behavior of a Cu¿19.4 Zn¿13.1 Al (at.%) single crystal at room temperature have been determined experimentally. For a constant cross-head speed the trajectories and the associated hysteresis behavior are perfectly reproducible; the trajectories exhibit memory properties, dependent only on the values of return points, where transformation direction is reverted. An adapted version of the Preisach model for hysteresis has been implemented to predict the observed trajectories, using a set of experimental first¿order reversal curves as input data. Explicit formulas have been derived giving all trajectories in terms of this data set, with no adjustable parameters. Comparison between experimental and calculated trajectories shows a much better agreement for descending than for ascending paths, an indication of a dissymmetry between the dissipation mechanisms operative in forward and reverse directions of martensitic transformation.
Resumo:
Convective flows of a small Prandtl number fluid contained in a two-dimensional cavity subject to a lateral thermal gradient are numerically studied by using different techniques. The aspect ratio (length to height) is kept at around 2. This value is found optimal to make the flow most unstable while keeping the basic single-roll structure. Two cases of thermal boundary conditions on the horizontal plates are considered: perfectly conducting and adiabatic. For increasing Rayleigh numbers we find a transition from steady flow to periodic oscillations through a supercritical Hopf bifurcation that maintains the centrosymmetry of the basic circulation. For a Rayleigh number of about ten times that of the Hopf bifurcation the system initiates a complex scenario of bifurcations. In the conductive case these include a quasiperiodic route to chaos. In the adiabatic one the dynamics is dominated by the interaction of two Neimark-Sacker bifurcations of the basic periodic solutions, leading to the stable coexistence of three incommensurate frequencies, and finally to chaos. In all cases, the complex time-dependent behavior does not break the basic, single-roll structure.
Resumo:
We present a high‐resolution electron microscopy study of the microstructure of boron nitride thin films grown on silicon (100) by radio‐frequency plasma‐assisted chemical vapor deposition using B2H6 (1% in H2) and NH3 gases. Well‐adhered boron nitride films grown on the grounded electrode show a highly oriented hexagonal structure with the c‐axis parallel to the substrate surface throughout the film, without any interfacial amorphous layer. We ascribed this textured growth to an etching effect of atomic hydrogen present in the gas discharge. In contrast, films grown on the powered electrode, with compressive stress induced by ion bombardment, show a multilayered structure as observed by other authors, composed of an amorphous layer, a hexagonal layer with the c‐axis parallel to the substrate surface and another layer oriented at random
Resumo:
Hydrogenated amorphous and nanocrystalline silicon, deposited by catalytic chemical vapour deposition, have been doped during deposition by the addition of diborane and phosphine in the feed gas, with concentrations in the region of 1%. The crystalline fraction, dopant concentration and electrical properties of the films are studied. The nanocrystalline films exhibited a high doping efficiency, both for n and p doping, and electrical characteristics similar to those of plasma-deposited films. The doping efficiency of n-type amorphous silicon is similar to that obtained for plasma-deposited electronic-grade amorphous silicon, whereas p-type layers show a doping efficiency of one order of magnitude lower. A higher deposition temperature of 450°C was required to achieve p-type films with electrical characteristics similar to those of plasma-deposited films.
Resumo:
We report on the magneto-optical measurements of an epitaxial SrRuO3 film grown on SrTiO3 (0 0 1), which previously was determined to be single domain orientated by x-ray diffraction and Raman spectroscopy techniques. Our experiments reveal a large Kerr rotation, which reaches a maximum value of about 0.5° at low temperature. By measuring magnetic hysteresis loops at different temperatures, we determined the temperature dependence of the Kerr rotation in the polar configuration. Values of the anisotropic magnetoresistance ~ 20% have been measured. These values are remarkably higher than those of other metallic oxides such as manganites. This striking difference can be attributed to the strong spin-orbit interaction of the Ru 4d ion in the SrRuO3 compound.