74 resultados para Recasting alloys
Resumo:
The magnetocaloric effect that originates from the martensitic transition in the ferromagnetic Ni-Mn-Gashape-memory alloy is studied. We show that this effect is controlled by the magnetostructural coupling at boththe martensitic variant and magnetic domain length scales. A large entropy change induced by moderatemagnetic fields is obtained for alloys in which the magnetic moment of the two structural phases is not verydifferent. We also show that this entropy change is not associated with the entropy difference between themartensitic and the parent phase arising from the change in the crystallographic structure which has beenfound to be independent of the magnetic field within this range of fields.
Resumo:
Geometric parameters of binary (1:1) PdZn and PtZn alloys with CuAu-L10 structure were calculated with a density functional method. Based on the total energies, the alloys are predicted to feature equal formation energies. Calculated surface energies of PdZn and PtZn alloys show that (111) and (100) surfaces exposing stoichiometric layers are more stable than (001) and (110) surfaces comprising alternating Pd (Pt) and Zn layers. The surface energy values of alloys lie between the surface energies of the individual components, but they differ from their composition weighted averages. Compared with the pure metals, the valence d-band widths and the Pd or Pt partial densities of states at the Fermi level are dramatically reduced in PdZn and PtZn alloys. The local valence d-band density of states of Pd and Pt in the alloys resemble that of metallic Cu, suggesting that a similar catalytic performance of these systems can be related to this similarity in the local electronic structures.
Resumo:
We have observed a type of giant magnetoresistance (GMR) in magnetic granular Co10Cu90 alloys. The asymmetric GMR depends strongly on the size of magnetic Co particles, which exhibit superparamagnetic behavior at given measured temperature. The asymmetric GMR points to a metastable state that develops when the sample is field-cooled, which is lost after recycling. We propose that high-field cooling produces more effective parallel alignment of small unblocked Co particle moments and interfacial magnetizations, which contributes to the further decrease of the resistance in comparison with the samples zero-field-cooled, and then applied to the same field.
Resumo:
The most extensively studied Heusler alloys are those based on the Ni-Mn-Ga system. However, to overcome the high cost of Gallium and the usually low martensitic transformation temperature, the search for Ga-free alloys has been recently attempted, particularly, by introducing In, Sn or Sb. In this work, two alloys (Mn50Ni35.5In14.5 and Ni50Mn35In15) have been obtained by melt spinning. We outline their structural and thermal behaviour. Mn50Ni35.5In14.5 alloy has the transformation above room temperature whereas Ni50Mn35In15 does not have this transformation in the temperature range here analyzed
Resumo:
We present results from both, calorimetric and dilatometric studies of the isothermal ordering process taking place in a Cu-Zn-Al shape memory alloy after quenches from Tq temperatures ranging from 350 K to 1200 K. The dissipated energy and the length variations of the system are obtained during the process. The change of these quantities in the whole process have been compared with the difference [MATH] between Ms, measured after the relaxation and Ms measured just after the quench. We obtain that these three quantities present, as a function of Tq, the same qualitative behaviour. These changes are then associated with changes of the L21 ordering after the quench in the system. The relaxational process does not follow a single exponential decay. Instead, a continuous slowing down is observed. A relaxation time [MATH] has been defined to characterize the relaxation rate. We show that [MATH] depends on both the annealing and the quenching (Tq [MATH] 800 K) temperatures through an Arrhenius law.
Resumo:
Magnetization versus temperature in the temperature interval 2-200 K was measured for amorphous alloys of three different compositions: Fe 81.5B14.5Si4, Fe40Ni38 Mo4B18, and Co70Fe5Ni 2Mo3B5Si15. The measurements were performed by means of a SQUID (superconducting quantum interference device) magnetometer. The aim was to extract information about the different mechanisms contributing to thermal demagnetization. A powerful data analysis technique based on successive minimization procedures has demonstrated that Stoner excitations of the strong ferromagnetic type play a significant role in the Fe-Ni alloy studied. The Fe-rich and Co-rich alloys do not show a measurable contribution from single-particle excitations.
Resumo:
Background: Design of newly engineered microbial strains for biotechnological purposes would greatly benefit from the development of realistic mathematical models for the processes to be optimized. Such models can then be analyzed and, with the development and application of appropriate optimization techniques, one could identify the modifications that need to be made to the organism in order to achieve the desired biotechnological goal. As appropriate models to perform such an analysis are necessarily non-linear and typically non-convex, finding their global optimum is a challenging task. Canonical modeling techniques, such as Generalized Mass Action (GMA) models based on the power-law formalism, offer a possible solution to this problem because they have a mathematical structure that enables the development of specific algorithms for global optimization. Results: Based on the GMA canonical representation, we have developed in previous works a highly efficient optimization algorithm and a set of related strategies for understanding the evolution of adaptive responses in cellular metabolism. Here, we explore the possibility of recasting kinetic non-linear models into an equivalent GMA model, so that global optimization on the recast GMA model can be performed. With this technique, optimization is greatly facilitated and the results are transposable to the original non-linear problem. This procedure is straightforward for a particular class of non-linear models known as Saturable and Cooperative (SC) models that extend the power-law formalism to deal with saturation and cooperativity. Conclusions: Our results show that recasting non-linear kinetic models into GMA models is indeed an appropriate strategy that helps overcoming some of the numerical difficulties that arise during the global optimization task.
Resumo:
A thermally controlled transport device was designed and tested. As hot food needs to be transported at temperatures between 60 and 70ºC in order to avoid contamination by microorganisms, the use of Molecular Alloy Phase Change Materials (MAPCM) can lead to improvements in this field of application. A heat transfer numerical simulation of the box used for transporting the food was conducted. Despite obvious simplifications, a good agreement between numerical simulation and experimental results was obtained. Furthermore, we compared our experimental results with those from other experiments related to the transport of hot food. Here, pizza is taken as the example, and it is shown that delivering time can be increased three-fold.
Resumo:
A Monte Carlo simulation study of the vacancy-assisted domain growth in asymmetric binary alloys is presented. The system is modeled using a three-state ABV Hamiltonian which includes an asymmetry term. Our simulated system is a stoichiometric two-dimensional binary alloy with a single vacancy which evolves according to the vacancy-atom exchange mechanism. We obtain that, compared to the symmetric case, the ordering process slows down dramatically. Concerning the asymptotic behavior it is algebraic and characterized by the Allen-Cahn growth exponent x51/2. The late stages of the evolution are preceded by a transient regime strongly affected by both the temperature and the degree of asymmetry of the alloy. The results are discussed and compared to those obtained for the symmetric case.
Resumo:
L’objecte del present treball és produir, caracteritzar i comparar aliatges tipusHeusler no estequiomètrics de base Ni-Mn-Sn-X (on X= Co, Fe per tant, es pretén generar mostres dels aliatges utilitzant els precursors ambuna composició que variï de l’establerta per Heusler. La morfologia del material será en forma de cinta, ja que és la morfologia més semblant a les aplicacions industrials que voldrem aplicar a aquests aliatges
Resumo:
L’objectiu d’aquest projecte és la producció d’aliatges tipus Heusler per estudiar lesestructures corresponents i portar a terme un estudi experimental per poder analitzarla influència de la composició en la transformació martensítica del material, en concret s’avalua la influència de la concentració de Snen presència del Co. Per assolir aquest objectiu es produeixen i es caracteritzen tresaliatges Heusler no estequiomètrics amb composició Mn50Ni45-XSnXCo5 on x pren elvalor de 5, 7’5 i 10. Els aliatges estudiats són. • Mn50Ni40Sn5Co5• Mn50Ni37,5Sn7,5Co5• Mn50Ni35Sn10Co5
Resumo:
In the present work, microstructure improvement using FSP (Friction Stir Processing) is studied. In the first part of the work, the microstructure improvement of as-cast A356 is demonstrated. Some tensile tests were applied to check the increase in ductility. However, the expected results couldn’t be achieved. In the second part, the microstructure improvement of a fusion weld in 1050 aluminium alloy is presented. Hardness tests were carried out to prove the mechanical propertyimprovements. In the third and last part, the microstructure improvement of 1050 aluminium alloy is achieved. A discussion of the mechanical property improvements induced by FSP is made. The influence of tool traverse speed on microstructure and mechanical properties is also discussed. Hardness tests and recrystallization theory enabled us to find out such influence
Resumo:
La síntesis mecánica es un proceso basado en la molturación de una mezcla de polvosometida a altas energías que se producen por los choques entre las partículas y lasbolas de un micromolino, entre las partículas y las paredes del recipiente y entre lasmismas partículas. Los dos procesos involucrados en el proceso de síntesis mecánicason la soldadura en frío y la fractura.El proyecto que se presenta es una continuación de los diferentes estudios realizadosen el departamento de Recerca de Materials i Termodinàmica de la Universidad deGirona sobre el proceso de aleado mecánico, en especial del proyecto de Ivan Darnés(Abril 2005) donde se realizaba un estudio comparativo de los micromolinosPulverisette 7 (P7) y SPEX8000 a partir de dos aleaciones en polvo de base Fe.El presente proyecto tiene como objetivo principal realizar nuevamente unacomparación de los equipos P7 y SPEX8000, pero utilizando otras mezclas de polvoiniciales y modificando los parámetros del proceso. Para tal comparación se estudiaránlas muestras obtenidas a nivel estructural, térmico y morfológico