64 resultados para Radiation well logging
Resumo:
Background: Myotragus balearicus was an endemic bovid from the Balearic Islands (Western Mediterranean) that became extinct around 6,000-4,000 years ago. The Myotragus evolutionary lineage became isolated in the islands most probably at the end of the Messinian crisis, when the desiccation of the Mediterranean ended, in a geological date established at 5.35 Mya. Thus, the sequences of Myotragus could be very valuable for calibrating the mammalian mitochondrial DNA clock and, in particular, the tree of the Caprinae subfamily, to which Myotragus belongs. Results: We have retrieved the complete mitochondrial cytochrome b gene (1,143 base pairs), plus fragments of the mitochondrial 12S gene and the nuclear 28S rDNA multi-copy gene from a well preserved Myotragus subfossil bone. The best resolved phylogenetic trees, obtained with the cytochrome b gene, placed Myotragus in a position basal to the Ovis group. Using the calibration provided by the isolation of Balearic Islands, we calculated that the initial radiation of caprines can be dated at 6.2 ± 0.4 Mya. In addition, alpine and southern chamois, considered until recently the same species, split around 1.6 ± 0.3 Mya, indicating that the two chamois species have been separated much longer than previously thought. Conclusion: Since there are almost no extant endemic mammals in Mediterranean islands, the sequence of the extinct Balearic endemic Myotragus has been crucial for allowing us to use the Messinian crisis calibration point for dating the caprines phylogenetic tree.
Resumo:
High-energy charged particles in the van Allen radiation belts and in solar energetic particle events can damage satellites on orbit leading to malfunctions and loss of satellite service. Here we describe some recent results from the SPACECAST project on modelling and forecasting the radiation belts, and modelling solar energetic particle events. We describe the SPACECAST forecasting system that uses physical models that include wave-particle interactions to forecast the electron radiation belts up to 3 h ahead. We show that the forecasts were able to reproduce the >2 MeV electron flux at GOES 13 during the moderate storm of 7-8 October 2012, and the period following a fast solar wind stream on 25-26 October 2012 to within a factor of 5 or so. At lower energies of 10- a few 100 keV we show that the electron flux at geostationary orbit depends sensitively on the high-energy tail of the source distribution near 10 RE on the nightside of the Earth, and that the source is best represented by a kappa distribution. We present a new model of whistler mode chorus determined from multiple satellite measurements which shows that the effects of wave-particle interactions beyond geostationary orbit are likely to be very significant. We also present radial diffusion coefficients calculated from satellite data at geostationary orbit which vary with Kp by over four orders of magnitude. We describe a new automated method to determine the position at the shock that is magnetically connected to the Earth for modelling solar energetic particle events and which takes into account entropy, and predict the form of the mean free path in the foreshock, and particle injection efficiency at the shock from analytical theory which can be tested in simulations.
Resumo:
The formation and semiclassical evaporation of two-dimensional black holes is studied in an exactly solvable model. Above a certain threshold energy flux, collapsing matter forms a singularity inside an apparent horizon. As the black hole evaporates the apparent horizon recedes and meets the singularity in a finite proper time. The singularity emerges naked, and future evolution of the geometry requires boundary conditions to be imposed there. There is a natural choice of boundary conditions which matches the evaporated black hole solution onto the linear dilaton vacuum. Below the threshold energy flux no horizon forms and boundary conditions can be imposed where infalling matter is reflected from a timelike boundary. All information is recovered at spatial infinity in this case.
Resumo:
We present here new observations conducted with the EVN and MERLIN of the persistent microquasar LS 5039 discovered by Paredes et al. (2000) with the VLBA. The new observations confirm the presence of an asymmetric two-sided jet reaching up to 1000 AU on the longest jet arm. The results suggest a bending of the jets with increasing distance from the core and/or precession. The origin and location of the high-energy gamma-ray emission associated with the system is discussed and an estimate of the magnetic field at the base of the jet given. Our results suggest a well collimated radio jet. We also comment on new observing strategies to be used with satellites and forthcoming detectors, since this persistent source appears to be a rather good laboratory to explore the accretion/ejection processes taking place near compact objects.
Resumo:
Background: Differences in the distribution of genotypes between individuals of the same ethnicity are an important confounder factor commonly undervalued in typical association studies conducted in radiogenomics. Objective: To evaluate the genotypic distribution of SNPs in a wide set of Spanish prostate cancer patients for determine the homogeneity of the population and to disclose potential bias. Design, Setting, and Participants: A total of 601 prostate cancer patients from Andalusia, Basque Country, Canary and Catalonia were genotyped for 10 SNPs located in 6 different genes associated to DNA repair: XRCC1 (rs25487, rs25489, rs1799782), ERCC2 (rs13181), ERCC1 (rs11615), LIG4 (rs1805388, rs1805386), ATM (rs17503908, rs1800057) and P53 (rs1042522). The SNP genotyping was made in a Biotrove OpenArrayH NT Cycler. Outcome Measurements and Statistical Analysis: Comparisons of genotypic and allelic frequencies among populations, as well as haplotype analyses were determined using the web-based environment SNPator. Principal component analysis was made using the SnpMatrix and XSnpMatrix classes and methods implemented as an R package. Non-supervised hierarchical cluster of SNP was made using MultiExperiment Viewer. Results and Limitations: We observed that genotype distribution of 4 out 10 SNPs was statistically different among the studied populations, showing the greatest differences between Andalusia and Catalonia. These observations were confirmed in cluster analysis, principal component analysis and in the differential distribution of haplotypes among the populations. Because tumor characteristics have not been taken into account, it is possible that some polymorphisms may influence tumor characteristics in the same way that it may pose a risk factor for other disease characteristics. Conclusion: Differences in distribution of genotypes within different populations of the same ethnicity could be an important confounding factor responsible for the lack of validation of SNPs associated with radiation-induced toxicity, especially when extensive meta-analysis with subjects from different countries are carried out.
Resumo:
Optical tweezers are an innovative technique for the non-contact, all-optical manipulation of small material samples, which has extraordinarily expanded and evolved since its inception in the mid-80s of the last century. Nowadays, the potential of optical tweezers has been clearly proven and a wide range of applications both from the physical and biological sciences have solidly emerged, turning the early ideas and techniques into a powerful paradigm for experimentation in the micro- and nanoworld. This review aims at highlighting the fundamental concepts that are essential for a thorough understanding of optical trapping, making emphasis on both its manipulation and measurement capabilities, as well as on the vast array of important biological applications appeared in the last years.
Resumo:
MGRO J2019+37 is an unidentified extended source of very high energy gamma-rays originally reported by the Milagro Collaboration as the brightest TeV source in the Cygnus region. Its extended emission could be powered by either a single or several sources. The GeV pulsar AGL J2020.5+3653 , discovered by AGILE and associated with PSR J2021+3651 , could contribute to the emission from MGRO J2019+37 . Aims. Our aim is to identify radio and near-infrared sources in the field of the extended TeV source MGRO J2019+37 , and study potential counterparts to explain its emission. Methods. We surveyed a region of about 6 square degrees with the Giant Metrewave Radio Telescope (GMRT) at the frequency 610 MHz. We also observed the central square degree of this survey in the near-infrared -band using the 3.5 m telescope in Calar Alto. Archival X-ray observations of some specific fields are included. VLBI observations of an interesting radio source were performed. We explored possible scenarios to produce the multi-TeV emission from MGRO J2019+37 and studied which of the sources could be the main particle accelerator. Results. We present a catalogue of 362 radio sources detected with the GMRT in the field of MGRO J2019+37 , and the results of a cross-correlation of this catalog with one obtained at near-infrared wavelengths, which contains ~3105 sources, as well as with available X-ray observations of the region. Some peculiar sources inside the ~1° uncertainty region of the TeV emission from MGRO J2019+37 are discussed in detail, including the pulsar PSR J2021+3651 and its pulsar wind nebula PWN G75.2+0.1 , two new radio-jet sources, the H II region Sh 2-104 containing two star clusters, and the radio source NVSS J202032+363158 . We also find that the hadronic scenario is the most likely in case of a single accelerator, and discuss the possible contribution from the sources mentioned above. Conclusions. Although the radio and GeV pulsar PSR J2021+3651 / AGL J2020.5+3653 and its associated pulsar wind nebula PWN G75.2+0.1 can contribute to the emission from MGRO J2019+37 , extrapolation of the GeV spectrum does not explain the detected multi-TeV flux. Other sources discussed here could contribute to the emission of the Milagro source.
Resumo:
Background: Myotragus balearicus was an endemic bovid from the Balearic Islands (Western Mediterranean) that became extinct around 6,000-4,000 years ago. The Myotragus evolutionary lineage became isolated in the islands most probably at the end of the Messinian crisis, when the desiccation of the Mediterranean ended, in a geological date established at 5.35 Mya. Thus, the sequences of Myotragus could be very valuable for calibrating the mammalian mitochondrial DNA clock and, in particular, the tree of the Caprinae subfamily, to which Myotragus belongs. Results: We have retrieved the complete mitochondrial cytochrome b gene (1,143 base pairs), plus fragments of the mitochondrial 12S gene and the nuclear 28S rDNA multi-copy gene from a well preserved Myotragus subfossil bone. The best resolved phylogenetic trees, obtained with the cytochrome b gene, placed Myotragus in a position basal to the Ovis group. Using the calibration provided by the isolation of Balearic Islands, we calculated that the initial radiation of caprines can be dated at 6.2 ± 0.4 Mya. In addition, alpine and southern chamois, considered until recently the same species, split around 1.6 ± 0.3 Mya, indicating that the two chamois species have been separated much longer than previously thought. Conclusion: Since there are almost no extant endemic mammals in Mediterranean islands, the sequence of the extinct Balearic endemic Myotragus has been crucial for allowing us to use the Messinian crisis calibration point for dating the caprines phylogenetic tree.
Resumo:
Ressenya del llibre: 'Gender Inequalities, Households and the Production of Well-being in Modern Europe'
Resumo:
Glioblastoma multiforme (GBM) is the most common and aggressive primary brain tumor in adults. Despite concerted efforts to improve current therapies and develop novel clinical approaches, patient survival remains poor. As such, increasing attention has focused on developing new therapeutic strategies that specifically target the apoptotic pathway in order to improve treatment responses. Recently, nutlins, small-molecule antagonists of MDM2, have been developed to inhibit p53-MDM2 interaction and activate p53 signaling in cancer cells. Glioma cell lines and primary cultured glioblastoma cells were treated with nutlin-3a. Nutlin-3a induced p53-dependent G1- and G2-M cell cycle arrest and apoptosis in glioma cell lines with normal TP53 status. In addition, nutlin-arrested glioma cells show morphological features of senescence and persistent induction of p21 protein. Furthermore, senescence induced by nutlin-3a might be depending on mTOR pathway activity. In wild-type TP53 primary cultured cells, exposure to nutlin-3a resulted in variable degrees of apoptosis as well as cellular features of senescence. Nutlin-3a-induced apoptosis and senescence were firmly dependent on the presence of functional p53, as revealed by the fact that glioblastoma cells with knockdown p53 with specific siRNA, or cells with mutated or functionally impaired p53 pathway, were completely insensitive to the drug. Finally, we also found that nutlin-3a increased response of glioma cells to radiation therapy. The results provide a basis for the rational use of MDM2 antagonists as a novel treatment option for glioblastoma patients.
Resumo:
Glioblastoma multiforme (GBM) is the most common and aggressive primary brain tumor in adults. Despite concerted efforts to improve current therapies and develop novel clinical approaches, patient survival remains poor. As such, increasing attention has focused on developing new therapeutic strategies that specifically target the apoptotic pathway in order to improve treatment responses. Recently, nutlins, small-molecule antagonists of MDM2, have been developed to inhibit p53-MDM2 interaction and activate p53 signaling in cancer cells. Glioma cell lines and primary cultured glioblastoma cells were treated with nutlin-3a. Nutlin-3a induced p53-dependent G1- and G2-M cell cycle arrest and apoptosis in glioma cell lines with normal TP53 status. In addition, nutlin-arrested glioma cells show morphological features of senescence and persistent induction of p21 protein. Furthermore, senescence induced by nutlin-3a might be depending on mTOR pathway activity. In wild-type TP53 primary cultured cells, exposure to nutlin-3a resulted in variable degrees of apoptosis as well as cellular features of senescence. Nutlin-3a-induced apoptosis and senescence were firmly dependent on the presence of functional p53, as revealed by the fact that glioblastoma cells with knockdown p53 with specific siRNA, or cells with mutated or functionally impaired p53 pathway, were completely insensitive to the drug. Finally, we also found that nutlin-3a increased response of glioma cells to radiation therapy. The results provide a basis for the rational use of MDM2 antagonists as a novel treatment option for glioblastoma patients.
Resumo:
Background and purpose: In planning to meet evidence based needs for radiotherapy, guidelines for the provision of capital and human resources are central if access, quality and safety are not to be compromised. A component of the ESTRO-HERO (Health Economics in Radiation Oncology) project is to document the current availability and content of guidelines for radiotherapy in Europe. Materials and methods: An 84 part questionnaire was distributed to the European countries through their national scientific and professional radiotherapy societies with 30 items relating to the availability of guidelines for equipment and staffing and selected operational issues. Twenty-nine countries provided full or partial evaluable responses. Results: The availability of guidelines across Europe is far from uniform. The metrics used for capital and human resources are variable. There seem to have been no major changes in the availability or specifics of guidelines over the ten-year period since the QUARTS study with the exception of the recent expansion of RTT staffing models. Where comparison is possible it appears that staffing for radiation oncologists, medical physicists and particularly RTTs tend to exceed guidelines suggesting developments in clinical radiotherapy are moving faster than guideline updating. Conclusion: The efficient provision of safe, high quality radiotherapy services would benefit from the availability of well-structured guidelines for capital and human resources, based on agreed upon metrics, which could be linked to detailed estimates of need
Resumo:
Background: Documenting the distribution of radiotherapy departments and the availability of radiotherapy equipment in the European countries is an important part of HERO the ESTRO Health Economics in Radiation Oncology project. HERO has the overall aim to develop a knowledge base of the provision of radiotherapy in Europe and build a model for health economic evaluation of radiation treatments at the European level. The aim of the current report is to describe the distribution of radiotherapy equipment in European countries. Methods: An 84-item questionnaire was sent out to European countries, principally through their national societies. The current report includes a detailed analysis of radiotherapy departments and equipment (questionnaire items 2629), analyzed in relation to the annual number of treatment courses and the socio-economic status of the countries. The analysis is based on validated responses from 28 of the 40 European countries defined by the European Cancer Observatory (ECO). Results: A large variation between countries was found for most parameters studied. There were 2192 linear accelerators, 96 dedicated stereotactic machines, and 77 cobalt machines reported in the 27 countries where this information was available. A total of 12 countries had at least one cobalt machine in use. There was a median of 0.5 simulator per MV unit (range 0.31.5) and 1.4 (range 0.44.4) simulators per department. Of the 874 simulators, a total of 654 (75%) were capable of 3D imaging (CT-scanner or CBCToption). The number of MV machines (cobalt, linear accelerators, and dedicated stereotactic machines) per million inhabitants ranged from 1.4 to 9.5 (median 5.3) and the average number of MV machines per department from 0.9 to 8.2 (median 2.6). The average number of treatment courses per year per MV machine varied from 262 to 1061 (median 419). While 69% of MV units were capable of IMRT only 49% were equipped for image guidance (IGRT). There was a clear relation between socio-economic status, as measured by GNI per capita, and availability of radiotherapy equipment in the countries. In many low income countries in Southern and Central-Eastern Europe there was very limited access to radiotherapy and especially to equipment for IMRT or IGRT. Conclusions: The European average number of MV machines per million inhabitants and per department is now better in line with QUARTS recommendations from 2005, but the survey also showed a significant heterogeneity in the access to modern radiotherapy equipment in Europe. High income countries especially in Northern-Western Europe are well-served with radiotherapy resources, other countries are facing important shortages of both equipment in general and especially machines capable of delivering high precision conformal treatments (IMRT, IGRT)
Resumo:
Abstract Background: Little is known about how sitting time, alone or in combination with markers of physical activity (PA), influences mental well-being and work productivity. Given the need to develop workplace PA interventions that target employees’ health related efficiency outcomes; this study examined the associations between self-reported sitting time, PA, mental well-being and work productivity in office employees. Methods: Descriptive cross-sectional study. Spanish university office employees (n = 557) completed a survey measuring socio-demographics, total and domain specific (work and travel) self-reported sitting time, PA (International Physical Activity Questionnaire short version), mental well-being (Warwick-Edinburg Mental Well-Being Scale) and work productivity (Work Limitations Questionnaire). Multivariate linear regression analyses determined associations between the main variables adjusted for gender, age, body mass index and occupation. PA levels (low, moderate and high) were introduced into the model to examine interactive associations. Results: Higher volumes of PA were related to higher mental well-being, work productivity and spending less time sitting at work, throughout the working day and travelling during the week, including the weekends (p < 0.05). Greater levels of sitting during weekends was associated with lower mental well-being (p < 0.05). Similarly, more sitting while travelling at weekends was linked to lower work productivity (p < 0.05). In highly active employees, higher sitting times on work days and occupational sitting were associated with decreased mental well-being (p < 0.05). Higher sitting times while travelling on weekend days was also linked to lower work productivity in the highly active (p < 0.05). No significant associations were observed in low active employees. Conclusions: Employees’ PA levels exerts different influences on the associations between sitting time, mental well-being and work productivity. The specific associations and the broad sweep of evidence in the current study suggest that workplace PA strategies to improve the mental well-being and productivity of all employees should focus on reducing sitting time alongside efforts to increase PA.