52 resultados para Principal components


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In an earlier investigation (Burger et al., 2000) five sediment cores near the RodriguesTriple Junction in the Indian Ocean were studied applying classical statistical methods(fuzzy c-means clustering, linear mixing model, principal component analysis) for theextraction of endmembers and evaluating the spatial and temporal variation ofgeochemical signals. Three main factors of sedimentation were expected by the marinegeologists: a volcano-genetic, a hydro-hydrothermal and an ultra-basic factor. Thedisplay of fuzzy membership values and/or factor scores versus depth providedconsistent results for two factors only; the ultra-basic component could not beidentified. The reason for this may be that only traditional statistical methods wereapplied, i.e. the untransformed components were used and the cosine-theta coefficient assimilarity measure.During the last decade considerable progress in compositional data analysis was madeand many case studies were published using new tools for exploratory analysis of thesedata. Therefore it makes sense to check if the application of suitable data transformations,reduction of the D-part simplex to two or three factors and visualinterpretation of the factor scores would lead to a revision of earlier results and toanswers to open questions . In this paper we follow the lines of a paper of R. Tolosana-Delgado et al. (2005) starting with a problem-oriented interpretation of the biplotscattergram, extracting compositional factors, ilr-transformation of the components andvisualization of the factor scores in a spatial context: The compositional factors will beplotted versus depth (time) of the core samples in order to facilitate the identification ofthe expected sources of the sedimentary process.Kew words: compositional data analysis, biplot, deep sea sediments

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Theory of compositional data analysis is often focused on the composition only. However in practical applications we often treat a composition together with covariableswith some other scale. This contribution systematically gathers and develop statistical tools for this situation. For instance, for the graphical display of the dependenceof a composition with a categorical variable, a colored set of ternary diagrams mightbe a good idea for a first look at the data, but it will fast hide important aspects ifthe composition has many parts, or it takes extreme values. On the other hand colored scatterplots of ilr components could not be very instructive for the analyst, if theconventional, black-box ilr is used.Thinking on terms of the Euclidean structure of the simplex, we suggest to set upappropriate projections, which on one side show the compositional geometry and on theother side are still comprehensible by a non-expert analyst, readable for all locations andscales of the data. This is e.g. done by defining special balance displays with carefully-selected axes. Following this idea, we need to systematically ask how to display, explore,describe, and test the relation to complementary or explanatory data of categorical, real,ratio or again compositional scales.This contribution shows that it is sufficient to use some basic concepts and very fewadvanced tools from multivariate statistics (principal covariances, multivariate linearmodels, trellis or parallel plots, etc.) to build appropriate procedures for all these combinations of scales. This has some fundamental implications in their software implementation, and how might they be taught to analysts not already experts in multivariateanalysis

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We compare correspondance análisis to the logratio approach based on compositional data. We also compare correspondance análisis and an alternative approach using Hellinger distance, for representing categorical data in a contingency table. We propose a coefficient which globally measures the similarity between these approaches. This coefficient can be decomposed into several components, one component for each principal dimension, indicating the contribution of the dimensions to the difference between the two representations. These three methods of representation can produce quite similar results. One illustrative example is given

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The use of perturbation and power transformation operations permits the investigation of linear processes in the simplex as in a vectorial space. When the investigated geochemical processes can be constrained by the use of well-known starting point, the eigenvectors of the covariance matrix of a non-centred principalcomponent analysis allow to model compositional changes compared with a reference point.The results obtained for the chemistry of water collected in River Arno (central-northern Italy) have open new perspectives for considering relative changes of the analysed variables and to hypothesise the relative effect of different acting physical-chemical processes, thus posing the basis for a quantitative modelling

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Entrevista en Lluís Oliver, químic gironí

Relevância:

20.00% 20.00%

Publicador:

Resumo:

At CoDaWork'03 we presented work on the analysis of archaeological glass composi-tional data. Such data typically consist of geochemical compositions involving 10-12variables and approximates completely compositional data if the main component, sil-ica, is included. We suggested that what has been termed `crude' principal componentanalysis (PCA) of standardized data often identi ed interpretable pattern in the datamore readily than analyses based on log-ratio transformed data (LRA). The funda-mental problem is that, in LRA, minor oxides with high relative variation, that maynot be structure carrying, can dominate an analysis and obscure pattern associatedwith variables present at higher absolute levels. We investigate this further using sub-compositional data relating to archaeological glasses found on Israeli sites. A simplemodel for glass-making is that it is based on a `recipe' consisting of two `ingredients',sand and a source of soda. Our analysis focuses on the sub-composition of componentsassociated with the sand source. A `crude' PCA of standardized data shows two clearcompositional groups that can be interpreted in terms of di erent recipes being used atdi erent periods, reected in absolute di erences in the composition. LRA analysis canbe undertaken either by normalizing the data or de ning a `residual'. In either case,after some `tuning', these groups are recovered. The results from the normalized LRAare di erently interpreted as showing that the source of sand used to make the glassdi ered. These results are complementary. One relates to the recipe used. The otherrelates to the composition (and presumed sources) of one of the ingredients. It seemsto be axiomatic in some expositions of LRA that statistical analysis of compositionaldata should focus on relative variation via the use of ratios. Our analysis suggests thatabsolute di erences can also be informative

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The classical statistical study of the wind speed in the atmospheric surface layer is madegenerally from the analysis of the three habitual components that perform the wind data,that is, the component W-E, the component S-N and the vertical component,considering these components independent.When the goal of the study of these data is the Aeolian energy, so is when wind isstudied from an energetic point of view and the squares of wind components can beconsidered as compositional variables. To do so, each component has to be divided bythe module of the corresponding vector.In this work the theoretical analysis of the components of the wind as compositionaldata is presented and also the conclusions that can be obtained from the point of view ofthe practical applications as well as those that can be derived from the application ofthis technique in different conditions of weather