50 resultados para Oscillations - étoiles
Resumo:
5-Methoxy-N,N-dimethyltryptamine (5-MeO-DMT) is a natural hallucinogen component of Ayahuasca, an Amazonian beverage traditionally used for ritual, religious and healing purposes that is being increasingly used for recreational purposes in US and Europe. 5MeO-DMT is of potential interest for schizophrenia research owing to its hallucinogenic properties. Two other psychotomimetic agents, phencyclidine and 2,5-dimethoxy-4-iodo-phenylisopropylamine (DOI), markedly disrupt neuronal activity and reduce the power of low frequency cortical oscillations (<4 Hz, LFCO) in rodent medial prefrontal cortex (mPFC). Here we examined the effect of 5-MeO-DMT on cortical function and its potential reversal by antipsychotic drugs. Moreover, regional brain activity was assessed by blood-oxygen level dependent (BOLD) functional magnetic resonance imaging (fMRI). 5-MeO-DMT disrupted mPFC activity, increasing and decreasing the discharge of 51 and 35% of the recorded pyramidal neurons, and reducing (−31%) the power of LFCO. The latter effect depended on 5-HT1A and 5-HT2A receptor activation and was reversed by haloperidol, clozapine, risperidone, and the mGlu2/3 agonist LY379268. Likewise, 5-MeO-DMT decreased BOLD responses in visual cortex (V1) and mPFC. The disruption of cortical activity induced by 5-MeO-DMT resembles that produced by phencyclidine and DOI. This, together with the reversal by antipsychotic drugs, suggests that the observed cortical alterations are related to the psychotomimetic action of 5-MeO-DMT. Overall, the present model may help to understand the neurobiological basis of hallucinations and to identify new targets in antipsychotic drug development.
Resumo:
We show the existence of families of hip-hop solutions in the equal-mass 2N-body problem which are close to highly eccentric planar elliptic homographic motions of 2N bodies plus small perpendicular non-harmonic oscillations. By introducing a parameter ϵ, the homographic motion and the small amplitude oscillations can be uncoupled into a purely Keplerian homographic motion of fixed period and a vertical oscillation described by a Hill type equation. Small changes in the eccentricity induce large variations in the period of the perpendicular oscillation and give rise, via a Bolzano argument, to resonant periodic solutions of the uncoupled system in a rotating frame. For small ϵ ≠ 0, the topological transversality persists and Brouwer's fixed point theorem shows the existence of this kind of solutions in the full system
Resumo:
Classical and quantum theory of spin waves in the vortex state of a mesoscopic submicron magnetic disk have been developed with account of the finite mass density of the vortex. Oscillations of the vortex core resemble oscillations of a charged string in a potential well in the presence of the magnetic field. A conventional gyrotropic frequency appears as a gap in the spectrum of spin waves of the vortex. The mass of the vortex has been computed, and the result agrees with experimental findings. The finite vortex mass generates a high-frequency branch of spin waves. The effects of an external magnetic field and dissipation have been addressed.
Resumo:
We show how certain N-dimensional dynamical systems are able to exploit the full instability capabilities of their fixed points to do Hopf bifurcations and how such a behavior produces complex time evolutions based on the nonlinear combination of the oscillation modes that emerged from these bifurcations. For really different oscillation frequencies, the evolutions describe robust wave form structures, usually periodic, in which selfsimilarity with respect to both the time scale and system dimension is clearly appreciated. For closer frequencies, the evolution signals usually appear irregular but are still based on the repetition of complex wave form structures. The study is developed by considering vector fields with a scalar-valued nonlinear function of a single variable that is a linear combination of the N dynamical variables. In this case, the linear stability analysis can be used to design N-dimensional systems in which the fixed points of a saddle-node pair experience up to N21 Hopf bifurcations with preselected oscillation frequencies. The secondary processes occurring in the phase region where the variety of limit cycles appear may be rather complex and difficult to characterize, but they produce the nonlinear mixing of oscillation modes with relatively generic features
Resumo:
Un dels principals problemes quan es realitza un anàlisi de contorns és la gran quantitat de dades implicades en la descripció de la figura. Per resoldre aquesta problemàtica, s’aplica la parametrització que consisteix en obtenir d’un contorn unes dades representatives amb els mínims coeficients possibles, a partir dels quals es podrà reconstruir de nou sense pèrdues molt evidents d’informació. En figures de contorns tancats, la parametrització més estudiada és l’aplicació de la transformada discreta de Fourier (DFT). Aquesta s’aplica a la seqüència de valors que descriu el comportament de les coordenades x i y al llarg de tots els punts que formen el traç. A diferència, en els contorns oberts no es pot aplicar directament la DFT ja que per fer-ho es necessita que el valor de x i de y siguin iguals tan en el primer punt del contorn com en l’últim. Això és degut al fet que la DFT representa sense error senyals periòdics. Si els senyals no acaben en el mateix punt, representa que hi ha una discontinuïtat i apareixen oscil·lacions a la reconstrucció. L’objectiu d’aquest treball és parametritzar contorns oberts amb la mateixa eficiència que s’obté en la parametrització de contorns tancats. Per dur-ho a terme, s’ha dissenyat un programa que permet aplicar la DFT en contorns oberts mitjançant la modificació de les seqüencies de x i y. A més a més, també utilitzant el programari Matlab s’han desenvolupat altres aplicacions que han permès veure diferents aspectes sobre la parametrització i com es comporten els Descriptors El·líptics de Fourier (EFD). Els resultats obtinguts han demostrat que l’aplicació dissenyada permet la parametrització de contorns oberts amb compressions òptimes, fet que facilitarà l’anàlisi quantitatiu de formes en camps com l’ecologia, medicina, geografia, entre d’altres.