69 resultados para Operations Management
Resumo:
We address the performance optimization problem in a single-stationmulticlass queueing network with changeover times by means of theachievable region approach. This approach seeks to obtainperformance bounds and scheduling policies from the solution of amathematical program over a relaxation of the system's performanceregion. Relaxed formulations (including linear, convex, nonconvexand positive semidefinite constraints) of this region are developedby formulating equilibrium relations satisfied by the system, withthe help of Palm calculus. Our contributions include: (1) newconstraints formulating equilibrium relations on server dynamics;(2) a flow conservation interpretation of the constraintspreviously derived by the potential function method; (3) newpositive semidefinite constraints; (4) new work decomposition lawsfor single-station multiclass queueing networks, which yield newconvex constraints; (5) a unified buffer occupancy method ofperformance analysis obtained from the constraints; (6) heuristicscheduling policies from the solution of the relaxations.
Resumo:
Although it is commonly accepted that most macroeconomic variables are nonstationary, it is often difficult to identify the source of the non-stationarity. In particular, it is well-known that integrated and short memory models containing trending components that may display sudden changes in their parameters share some statistical properties that make their identification a hard task. The goal of this paper is to extend the classical testing framework for I(1) versus I(0)+ breaks by considering a a more general class of models under the null hypothesis: non-stationary fractionally integrated (FI) processes. A similar identification problem holds in this broader setting which is shown to be a relevant issue from both a statistical and an economic perspective. The proposed test is developed in the time domain and is very simple to compute. The asymptotic properties of the new technique are derived and it is shown by simulation that it is very well-behaved in finite samples. To illustrate the usefulness of the proposed technique, an application using inflation data is also provided.
Resumo:
A new parametric minimum distance time-domain estimator for ARFIMA processes is introduced in this paper. The proposed estimator minimizes the sum of squared correlations of residuals obtained after filtering a series through ARFIMA parameters. The estimator iseasy to compute and is consistent and asymptotically normally distributed for fractionallyintegrated (FI) processes with an integration order d strictly greater than -0.75. Therefore, it can be applied to both stationary and non-stationary processes. Deterministic components are also allowed in the DGP. Furthermore, as a by-product, the estimation procedure provides an immediate check on the adequacy of the specified model. This is so because the criterion function, when evaluated at the estimated values, coincides with the Box-Pierce goodness of fit statistic. Empirical applications and Monte-Carlo simulations supporting the analytical results and showing the good performance of the estimator in finite samples are also provided.
Resumo:
In this paper we propose a metaheuristic to solve a new version of the Maximum CaptureProblem. In the original MCP, market capture is obtained by lower traveling distances or lowertraveling time, in this new version not only the traveling time but also the waiting time willaffect the market share. This problem is hard to solve using standard optimization techniques.Metaheuristics are shown to offer accurate results within acceptable computing times.
Resumo:
We address the problem of scheduling a multi-station multiclassqueueing network (MQNET) with server changeover times to minimizesteady-state mean job holding costs. We present new lower boundson the best achievable cost that emerge as the values ofmathematical programming problems (linear, semidefinite, andconvex) over relaxed formulations of the system's achievableperformance region. The constraints on achievable performancedefining these formulations are obtained by formulatingsystem's equilibrium relations. Our contributions include: (1) aflow conservation interpretation and closed formulae for theconstraints previously derived by the potential function method;(2) new work decomposition laws for MQNETs; (3) new constraints(linear, convex, and semidefinite) on the performance region offirst and second moments of queue lengths for MQNETs; (4) a fastbound for a MQNET with N customer classes computed in N steps; (5)two heuristic scheduling policies: a priority-index policy, anda policy extracted from the solution of a linear programmingrelaxation.
Resumo:
Models are presented for the optimal location of hubs in airline networks, that take into consideration the congestion effects. Hubs, which are the most congested airports, are modeled as M/D/c queuing systems, that is, Poisson arrivals, deterministic service time, and {\em c} servers. A formula is derived for the probability of a number of customers in the system, which is later used to propose a probabilistic constraint. This constraint limits the probability of {\em b} airplanes in queue, to be lesser than a value $\alpha$. Due to the computational complexity of the formulation. The model is solved using a meta-heuristic based on tabu search. Computational experience is presented.
Resumo:
The paper analyzes the determinants of the optimal scope of incorporation in the presenceof bankruptcy costs. Bankruptcy costs alone generate a non-trivial tradeoff between thebenefit of coinsurance and the cost of risk contamination associated to joint financing corporate projects through debt. This tradeoff is characterized for projects with binary returns,depending on the distributional characteristics of returns (mean, variability, skewness, heterogeneity, correlation, and number of projects), the bankruptcy recovery rate, and the taxrate advantage of debt relative to equity. Our testable predictions are broadly consistentwith existing empirical evidence on conglomerate mergers, spin-offs, project finance, andsecuritization.
Resumo:
In this paper we address the issue of locating hierarchical facilities in the presence of congestion. Two hierarchical models are presented, where lower level servers attend requests first, and then, some of the served customers are referred to higher level servers. In the first model, the objective is to find the minimum number of servers and theirlocations that will cover a given region with a distance or time standard. The second model is cast as a Maximal Covering Location formulation. A heuristic procedure is then presented together with computational experience. Finally, some extensions of these models that address other types of spatial configurations are offered.
Resumo:
We propose a model and solution methods, for locating a fixed number ofmultiple-server, congestible common service centers or congestible publicfacilities. Locations are chosen so to minimize consumers congestion (orqueuing) and travel costs, considering that all the demand must be served.Customers choose the facilities to which they travel in order to receiveservice at minimum travel and congestion cost. As a proxy for thiscriterion, total travel and waiting costs are minimized. The travel costis a general function of the origin and destination of the demand, whilethe congestion cost is a general function of the number of customers inqueue at the facilities.
Resumo:
We present new metaheuristics for solving real crew scheduling problemsin a public transportation bus company. Since the crews of thesecompanies are drivers, we will designate the problem by the bus-driverscheduling problem. Crew scheduling problems are well known and severalmathematical programming based techniques have been proposed to solvethem, in particular using the set-covering formulation. However, inpractice, there exists the need for improvement in terms of computationalefficiency and capacity of solving large-scale instances. Moreover, thereal bus-driver scheduling problems that we consider can present variantaspects of the set covering, as for example a different objectivefunction, implying that alternative solutions methods have to bedeveloped. We propose metaheuristics based on the following approaches:GRASP (greedy randomized adaptive search procedure), tabu search andgenetic algorithms. These metaheuristics also present some innovationfeatures based on and genetic algorithms. These metaheuristics alsopresent some innovation features based on the structure of the crewscheduling problem, that guide the search efficiently and able them tofind good solutions. Some of these new features can also be applied inthe development of heuristics to other combinatorial optimizationproblems. A summary of computational results with real-data problems ispresented.
Resumo:
This paper presents findings from a study investigating a firm s ethical practices along the value chain. In so doing we attempt to better understand potential relationships between a firm s ethical stance with its customers and those of its suppliers within a supply chain and identify particular sectoral and cultural influences that might impinge on this. Drawing upon a database comprising of 667 industrial firms from 27 different countries, we found that ethical practices begin with the firm s relationship with its customers, the characteristics of which then influence the ethical stance with the firm s suppliers within the supply chain. Importantly, market structure along with some key cultural characteristics were also found to exert significant influence on the implementation of ethical policies in these firms.
Resumo:
Nowadays, the Reverse Logistics field is becoming very important. On one hand, laws areimposing companies to be responsible for the contamination made by their products. On theother hand, companies have discovered the profits derived from a good Reverse Logisticsprocess. This paper is the result of the work done by a group of companies from the SpanishEditorial sector to understand and improve their Reverse Logistics process. The paperdescribes the characteristics of the Reverse Logistics process in this sector and theimprovements identified by the work group .
Resumo:
Most facility location decision models ignore the fact that for a facility to survive it needs a minimum demand level to cover costs. In this paper we present a decision model for a firm thatwishes to enter a spatial market where there are several competitors already located. This market is such that for each outlet there is a demand threshold level that has to be achievedin order to survive. The firm wishes to know where to locate itsoutlets so as to maximize its market share taking into account the threshold level. It may happen that due to this new entrance, some competitors will not be able to meet the threshold and therefore will disappear. A formulation is presented together with a heuristic solution method and computational experience.
Resumo:
In this paper we present a model that studies firm mergers in a spatial setting. A new model is formulated that addresses the issue of finding the number of branches that have to be eliminated by a firm after merging with another one, in order to maximize profits. The model is then applied to an example of bank mergers in the city of Barcelona. Finally, a variant of the formulation that introduces competition is presented together with some conclusions.
Resumo:
PRECON S.A is a manufacturing company dedicated to produce prefabricatedconcrete parts to several industries as rail transportation andagricultural industries.Recently, PRECON signed a contract with RENFE,the Spanish Nnational Rail Transportation Company to manufacturepre-stressed concrete sleepers for siding of the new railways of the highspeed train AVE. The scheduling problem associated with the manufacturingprocess of the sleepers is very complex since it involves severalconstraints and objectives. The constraints are related with productioncapacity, the quantity of available moulds, satisfying demand and otheroperational constraints. The two main objectives are related withmaximizing the usage of the manufacturing resources and minimizing themoulds movements. We developed a deterministic crowding genetic algorithmfor this multiobjective problem. The algorithm has proved to be a powerfuland flexible tool to solve the large-scale instance of this complex realscheduling problem.