53 resultados para Nonlinear Threshold Systems
Resumo:
This paper contains a study of the synchronization by homogeneous nonlinear driving of systems that are symmetric in phase space. The main consequence of this symmetry is the ability of the response to synchronize in more than just one way to the driving systems. These different forms of synchronization are to be understood as generalized synchronization states in which the motions of drive and response are in complete correlation, but the phase space distance between them does not converge to zero. In this case the synchronization phenomenon becomes enriched because there is multistability. As a consequence, there appear multiple basins of attraction and special responses to external noise. It is shown, by means of a computer simulation of various nonlinear systems, that: (i) the decay to the generalized synchronization states is exponential, (ii) the basins of attraction are symmetric, usually complicated, frequently fractal, and robust under the changes in the parameters, and (iii) the effect of external noise is to weaken the synchronization, and in some cases to produce jumps between the various synchronization states available
Resumo:
A simple chaotic flow is presented, which when driven by an identical copy of itself, for certain initial conditions, is able to display generalized synchronization instead of identical synchronization. Being that the drive and the response are observed in exactly the same coordinate system, generalized synchronization is demonstrated by means of the auxiliary system approach and by the conditional Lyapunov spectrum. This is interpreted in terms of changes in the structure of the system stationary points, caused by the coupling, which modify its global behavior.
Resumo:
Optimization models in metabolic engineering and systems biology focus typically on optimizing a unique criterion, usually the synthesis rate of a metabolite of interest or the rate of growth. Connectivity and non-linear regulatory effects, however, make it necessary to consider multiple objectives in order to identify useful strategies that balance out different metabolic issues. This is a fundamental aspect, as optimization of maximum yield in a given condition may involve unrealistic values in other key processes. Due to the difficulties associated with detailed non-linear models, analysis using stoichiometric descriptions and linear optimization methods have become rather popular in systems biology. However, despite being useful, these approaches fail in capturing the intrinsic nonlinear nature of the underlying metabolic systems and the regulatory signals involved. Targeting more complex biological systems requires the application of global optimization methods to non-linear representations. In this work we address the multi-objective global optimization of metabolic networks that are described by a special class of models based on the power-law formalism: the generalized mass action (GMA) representation. Our goal is to develop global optimization methods capable of efficiently dealing with several biological criteria simultaneously. In order to overcome the numerical difficulties of dealing with multiple criteria in the optimization, we propose a heuristic approach based on the epsilon constraint method that reduces the computational burden of generating a set of Pareto optimal alternatives, each achieving a unique combination of objectives values. To facilitate the post-optimal analysis of these solutions and narrow down their number prior to being tested in the laboratory, we explore the use of Pareto filters that identify the preferred subset of enzymatic profiles. We demonstrate the usefulness of our approach by means of a case study that optimizes the ethanol production in the fermentation of Saccharomyces cerevisiae.
Resumo:
Lying at the core of statistical physics is the need to reduce the number of degrees of freedom in a system. Coarse-graining is a frequently-used procedure to bridge molecular modeling with experiments. In equilibrium systems, this task can be readily performed; however in systems outside equilibrium, a possible lack of equilibration of the eliminated degrees of freedom may lead to incomplete or even misleading descriptions. Here, we present some examples showing how an improper coarse-graining procedure may result in linear approaches to nonlinear processes, miscalculations of activation rates and violations of the fluctuation-dissipation theorem.
Resumo:
The linear prediction coding of speech is based in the assumption that the generation model is autoregresive. In this paper we propose a structure to cope with the nonlinear effects presents in the generation of the speech signal. This structure will consist of two stages, the first one will be a classical linear prediction filter, and the second one will model the residual signal by means of two nonlinearities between a linear filter. The coefficients of this filter are computed by means of a gradient search on the score function. This is done in order to deal with the fact that the probability distribution of the residual signal still is not gaussian. This fact is taken into account when the coefficients are computed by a ML estimate. The algorithm based on the minimization of a high-order statistics criterion, uses on-line estimation of the residue statistics and is based on blind deconvolution of Wiener systems [1]. Improvements in the experimental results with speech signals emphasize on the interest of this approach.
Resumo:
In this work we consider the nonlinear equivalent representation form of oscillators that exhibit nonlinearities in both the elastic and the damping terms. The nonlinear damping effects are considered to be described by fractional power velocity terms which provide better predictions of the dissipative effects observed in some physical systems. It is shown that their effects on the system dynamics response are equivalent to a shift in the coefficient of the linear damping term of a Duffing oscillator. Then, its numerical integration predictions, based on its equivalent representation form given by the well-known forced, damped Duffing equation, are compared to the numerical integration values of its original equations of motion. The applicability of the proposed procedure is evaluated by studying the dynamics response of four nonlinear oscillators that arise in some engineering applications such as nanoresonators, microresonators, human wrist movements, structural engineering design, and chain dynamics of polymeric materials at high extensibility, among others
Resumo:
Electron scattering on a thin layer where the potential depends self-consistently on the wave function has been studied. When the amplitude of the incident wave exceeds a certain threshold, a soliton-shaped brightening (darkening) appears on the layer causing diffraction of the wave. Thus the spontaneously formed transverse pattern can be viewed as a self-induced nonlinear quantum screen. Attractive or repulsive nonlinearities result in different phase shifts of the wave function on the screen, which give rise to quite different diffraction patterns. Among others, the nonlinearity can cause self-focusing of the incident wave into a beam, splitting in two "beams," single or double traces with suppressed reflection or transmission, etc.
Resumo:
We introduce a new notion for the deformation of Gabor systems. Such deformations are in general nonlinear and, in particular, include the standard jitter error and linear deformations of phase space. With this new notion we prove a strong deformation result for Gabor frames and Gabor Riesz sequences that covers the known perturbation and deformation results. Our proof of the deformation theorem requires a new characterization of Gabor frames and Gabor Riesz sequences. It is in the style of Beurling's characterization of sets of sampling for bandlimited functions and extends significantly the known characterization of Gabor frames 'without inequalities' from lattices to non-uniform sets.