48 resultados para Mutant Cycles


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We describe here the construction of a delivery system for stable and directed insertion of gene constructs in a permissive chromosomal site of the bacterial wilt pathogen Ralstonia solanacearum. The system consists of a collection of suicide vectors the Ralstonia chromosome (pRC) series that carry an integration element flanked by transcription terminators and two sequences of homology to the chromosome of strain GMI1000, where the integration element is inserted through a double recombination event. Unique restriction enzyme sites and a GATEWAY cassette enable cloning of any promoter::gene combination in the integration element. Variants endowed with different selectable antibiotic resistance genes and promoter::gene combinations are described. We show that the system can be readily used in GMI1000 and adapted to other R. solanacearum strains using an accessory plasmid. We prove that the pRC system can be employed to complement a deletion mutation with a single copy of the native gene, and to measure transcription of selected promoters in monocopy both in vitro and in planta. Finally, the system has been used to purify and study secretion type III effectors. These novel genetic tools will be particularly useful for the construction of recombinant bacteria that maintain inserted genes or reporter fusions in competitive situations (i.e., during plant infection).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Long-period orbital forcing is a crucial component of the major global climate shifts during the Cenozoic as revealed in marine pelagic records. A complementary regional perspective of climate change can be assessed from internally drained lake basins, which are directly affected by insolation and precipitation balance. The Ebro Basin in northeastern Iberia embraces a 20 Myr long continuous sedimentary record where recurrent expansions and retractions of the central lacustrine system suggest periodic shifts of water balance due to orbital oscillations. In order to test climatic (orbital) forcing a key-piece of the basin, the Los Monegros lacustrine system, has been analyzed in detail. The cyclostratigraphic analysis points to orbital eccentricity as pacemaker of short to long-term lacustrine sequences, and reveals a correlation of maxima of the 100-kyr, 400-kyr and 2.4-Myr eccentricity cycles with periods of lake expansion. A magnetostratigraphy-based chronostratigraphy of the complete continental record allows further assessing long-period orbital forcing at basin scale, a view that challenges alternate scenarios where the stratigraphic architecture in foreland systems is preferably associated to tectonic processes. We conclude that while the location of lacustrine depocenters reacted to the long-term tectonic-driven accommodation changes, shorter wavelenght oscillations of lake environments, still million-year scale, claims for a dominance of orbital forcing. We suggest a decoupling between (tectonic) supply-driven clastic sequences fed from basin margins and (climatic) base level-driven lacustrine sequences in active settings with medium to large sediment transfer systems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The HERC gene family encodes proteins with two characteristic domains: HECT and RCC1-like. Proteins with HECT domain shave been described to function as ubiquitin ligases, and those that contain RCC1-like domains have been reported to function as GTPases regulators. These two activities are essential in a number of important cellular processes such as cell cycle, cell signaling, and membrane trafficking. Mutations affecting these domains have been found associated with retinitis pigmentosa, amyotrophic lateral sclerosis, and cancer. In humans, six HERC genes have been reported which encode two subgroups of HERC proteins: large (HERC1-2) and small (HERC3-6). The giant HERC1 protein was the first to be identified. It has been involved in membrane trafficking and cell proliferation/growth through its interactions with clathrin, M2-pyruvate kinase, and TSC2 proteins. Mutations affecting other members of the HERC family have been found to be associated with sterility and growth retardation. Here, we report the characterization of a recessive mutation named tambaleante, which causes progressive Purkinje cell degeneration leading to severe ataxia with reduced growth and lifespan in homozygous mice aged over two months. We mapped this mutation in mouse chromosome 9 and then performed positional cloning. We found a GuA transition at position 1448, causing a Gly to Glu substitution (Gly483Glu) in the highly conserved N- terminal RCC1-like domain of the HERC1 protein. Successful transgenic rescue, with either a mouse BAC containing the normal copy of Herc1 or with the human HERC1 cDNA, validated our findings. Histological and biochemical studies revealed extensive autophagy associated with an increase of the mutant protein level and a decrease of mTOR activity. Our observations concerning this first mutation in the Herc1 gene contribute to the functional annotation of the encoded E3 ubiquitin ligase and underline the crucial and unexpected role of this protein in Purkinje cell physiology.