121 resultados para Mixed binary nonlinear programming
Resumo:
Electrical property derivative expressions are presented for the nuclear relaxation contribution to static and dynamic (infinite frequency approximation) nonlinear optical properties. For CF4 and SF6, as opposed to HF and CH4, a term that is quadratic in the vibrational anharmonicity (and not previously evaluated for any molecule) makes an important contribution to the static second vibrational hyperpolarizability of CF4 and SF6. A comparison between calculated and experimental values for the difference between the (anisotropic) Kerr effect and electric field induced second-harmonic generation shows that, at the Hartree-Fock level, the nuclear relaxation/infinite frequency approximation gives the correct trend (in the series CH4, CF4, SF6) but is of the order of 50% too small
Resumo:
The vibrational configuration interaction method used to obtain static vibrational (hyper)polarizabilities is extended to dynamic nonlinear optical properties in the infinite optical frequency approximation. Illustrative calculations are carried out on H2 O and N H3. The former molecule is weakly anharmonic while the latter contains a strongly anharmonic umbrella mode. The effect on vibrational (hyper)polarizabilities due to various truncations of the potential energy and property surfaces involved in the calculation are examined
Resumo:
A variational approach for reliably calculating vibrational linear and nonlinear optical properties of molecules with large electrical and/or mechanical anharmonicity is introduced. This approach utilizes a self-consistent solution of the vibrational Schrödinger equation for the complete field-dependent potential-energy surface and, then, adds higher-level vibrational correlation corrections as desired. An initial application is made to static properties for three molecules of widely varying anharmonicity using the lowest-level vibrational correlation treatment (i.e., vibrational Møller-Plesset perturbation theory). Our results indicate when the conventional Bishop-Kirtman perturbation method can be expected to break down and when high-level vibrational correlation methods are likely to be required. Future improvements and extensions are discussed
Resumo:
The level of ab initio theory which is necessary to compute reliable values for the static and dynamic (hyper)polarizabilities of three medium size π-conjugated organic nonlinear optical (NLO) molecules is investigated. With the employment of field-induced coordinates in combination with a finite field procedure, the calculations were made possible. It is stated that to obtain reasonable values for the various individual contributions to the (hyper)polarizability, it is necessary to include electron correlation. Based on the results, the convergence of the usual perturbation treatment for vibrational anharmonicity was examined
Resumo:
Initial convergence of the perturbation series expansion for vibrational nonlinear optical (NLO) properties was analyzed. The zero-point vibrational average (ZPVA) was obtained through first-order in mechanical plus electrical anharmonicity. Results indicated that higher-order terms in electrical and mechanical anharmonicity can make substantial contributions to the pure vibrational polarizibility of typical NLO molecules
Resumo:
A variational method for Hamiltonian systems is analyzed. Two different variationalcharacterization for the frequency of nonlinear oscillations is also suppliedfor non-Hamiltonian systems
Resumo:
In a number of programs for gene structure prediction in higher eukaryotic genomic sequences, exon prediction is decoupled from gene assembly: a large pool of candidate exons is predicted and scored from features located in the query DNA sequence, and candidate genes are assembled from such a pool as sequences of nonoverlapping frame-compatible exons. Genes are scored as a function of the scores of the assembled exons, and the highest scoring candidate gene is assumed to be the most likely gene encoded by the query DNA sequence. Considering additive gene scoring functions, currently available algorithms to determine such a highest scoring candidate gene run in time proportional to the square of the number of predicted exons. Here, we present an algorithm whose running time grows only linearly with the size of the set of predicted exons. Polynomial algorithms rely on the fact that, while scanning the set of predicted exons, the highest scoring gene ending in a given exon can be obtained by appending the exon to the highest scoring among the highest scoring genes ending at each compatible preceding exon. The algorithm here relies on the simple fact that such highest scoring gene can be stored and updated. This requires scanning the set of predicted exons simultaneously by increasing acceptor and donor position. On the other hand, the algorithm described here does not assume an underlying gene structure model. Indeed, the definition of valid gene structures is externally defined in the so-called Gene Model. The Gene Model specifies simply which gene features are allowed immediately upstream which other gene features in valid gene structures. This allows for great flexibility in formulating the gene identification problem. In particular it allows for multiple-gene two-strand predictions and for considering gene features other than coding exons (such as promoter elements) in valid gene structures.
Resumo:
Models incorporating more realistic models of customer behavior, as customers choosing froman offer set, have recently become popular in assortment optimization and revenue management.The dynamic program for these models is intractable and approximated by a deterministiclinear program called the CDLP which has an exponential number of columns. However, whenthe segment consideration sets overlap, the CDLP is difficult to solve. Column generationhas been proposed but finding an entering column has been shown to be NP-hard. In thispaper we propose a new approach called SDCP to solving CDLP based on segments and theirconsideration sets. SDCP is a relaxation of CDLP and hence forms a looser upper bound onthe dynamic program but coincides with CDLP for the case of non-overlapping segments. Ifthe number of elements in a consideration set for a segment is not very large (SDCP) can beapplied to any discrete-choice model of consumer behavior. We tighten the SDCP bound by(i) simulations, called the randomized concave programming (RCP) method, and (ii) by addingcuts to a recent compact formulation of the problem for a latent multinomial-choice model ofdemand (SBLP+). This latter approach turns out to be very effective, essentially obtainingCDLP value, and excellent revenue performance in simulations, even for overlapping segments.By formulating the problem as a separation problem, we give insight into why CDLP is easyfor the MNL with non-overlapping considerations sets and why generalizations of MNL posedifficulties. We perform numerical simulations to determine the revenue performance of all themethods on reference data sets in the literature.
Resumo:
The choice network revenue management model incorporates customer purchase behavioras a function of the offered products, and is the appropriate model for airline and hotel networkrevenue management, dynamic sales of bundles, and dynamic assortment optimization.The optimization problem is a stochastic dynamic program and is intractable. A certainty-equivalencerelaxation of the dynamic program, called the choice deterministic linear program(CDLP) is usually used to generate dyamic controls. Recently, a compact linear programmingformulation of this linear program was given for the multi-segment multinomial-logit (MNL)model of customer choice with non-overlapping consideration sets. Our objective is to obtaina tighter bound than this formulation while retaining the appealing properties of a compactlinear programming representation. To this end, it is natural to consider the affine relaxationof the dynamic program. We first show that the affine relaxation is NP-complete even for asingle-segment MNL model. Nevertheless, by analyzing the affine relaxation we derive a newcompact linear program that approximates the dynamic programming value function betterthan CDLP, provably between the CDLP value and the affine relaxation, and often comingclose to the latter in our numerical experiments. When the segment consideration sets overlap,we show that some strong equalities called product cuts developed for the CDLP remain validfor our new formulation. Finally we perform extensive numerical comparisons on the variousbounds to evaluate their performance.
Resumo:
Working Paper no longer available. Please contact the author.
Resumo:
The effectiveness of decision rules depends on characteristics of bothrules and environments. A theoretical analysis of environments specifiesthe relative predictive accuracies of the lexicographic rule 'take-the-best'(TTB) and other simple strategies for binary choice. We identify threefactors: how the environment weights variables; characteristics of choicesets; and error. For cases involving from three to five binary cues, TTBis effective across many environments. However, hybrids of equal weights(EW) and TTB models are more effective as environments become morecompensatory. In the presence of error, TTB and similar models do not predictmuch better than a naïve model that exploits dominance. We emphasizepsychological implications and the need for more complete theories of theenvironment that include the role of error.
Resumo:
We present a new unifying framework for investigating throughput-WIP(Work-in-Process) optimal control problems in queueing systems,based on reformulating them as linear programming (LP) problems withspecial structure: We show that if a throughput-WIP performance pairin a stochastic system satisfies the Threshold Property we introducein this paper, then we can reformulate the problem of optimizing alinear objective of throughput-WIP performance as a (semi-infinite)LP problem over a polygon with special structure (a thresholdpolygon). The strong structural properties of such polygones explainthe optimality of threshold policies for optimizing linearperformance objectives: their vertices correspond to the performancepairs of threshold policies. We analyze in this framework theversatile input-output queueing intensity control model introduced byChen and Yao (1990), obtaining a variety of new results, including (a)an exact reformulation of the control problem as an LP problem over athreshold polygon; (b) an analytical characterization of the Min WIPfunction (giving the minimum WIP level required to attain a targetthroughput level); (c) an LP Value Decomposition Theorem that relatesthe objective value under an arbitrary policy with that of a giventhreshold policy (thus revealing the LP interpretation of Chen andYao's optimality conditions); (d) diminishing returns and invarianceproperties of throughput-WIP performance, which underlie thresholdoptimality; (e) a unified treatment of the time-discounted andtime-average cases.
Resumo:
Several studies have reported high performance of simple decision heuristics multi-attribute decision making. In this paper, we focus on situations where attributes are binary and analyze the performance of Deterministic-Elimination-By-Aspects (DEBA) and similar decision heuristics. We consider non-increasing weights and two probabilistic models for the attribute values: one where attribute values are independent Bernoulli randomvariables; the other one where they are binary random variables with inter-attribute positive correlations. Using these models, we show that good performance of DEBA is explained by the presence of cumulative as opposed to simple dominance. We therefore introduce the concepts of cumulative dominance compliance and fully cumulative dominance compliance and show that DEBA satisfies those properties. We derive a lower bound with which cumulative dominance compliant heuristics will choose a best alternative and show that, even with many attributes, this is not small. We also derive an upper bound for the expected loss of fully cumulative compliance heuristics and show that this is moderateeven when the number of attributes is large. Both bounds are independent of the values ofthe weights.
Resumo:
In this paper I explore the issue of nonlinearity (both in the datageneration process and in the functional form that establishes therelationship between the parameters and the data) regarding the poorperformance of the Generalized Method of Moments (GMM) in small samples.To this purpose I build a sequence of models starting with a simple linearmodel and enlarging it progressively until I approximate a standard (nonlinear)neoclassical growth model. I then use simulation techniques to find the smallsample distribution of the GMM estimators in each of the models.