64 resultados para LIE-ALGEBRAS
Resumo:
We consider the Clifford algebra C(q) of a regular quadratic space (V, q) over a field K with its structure of Z/2Z-graded K-algebra. We give a characterization of the group of graded automorphisms of C(q). In the last section we introduce the Z/nZ-graded algebras and we study as well as the group of graded automorphisms for some of them.
Resumo:
In arbitrary dimensional spaces the Lie algebra of the Poincaré group is seen to be a subalgebra of the complex Galilei algebra, while the Galilei algebra is a subalgebra of Poincar algebra. The usual contraction of the Poincar to the Galilei group is seen to be equivalent to a certain coordinate transformation.
Resumo:
For a dynamical system defined by a singular Lagrangian, canonical Noether symmetries are characterized in terms of their commutation relations with the evolution operators of Lagrangian and Hamiltonian formalisms. Separate characterizations are given in phase space, in velocity space, and through an evolution operator that links both spaces. 2000 American Institute of Physics.
Resumo:
A Lagrangian treatment of the quantization of first class Hamiltonian systems with constraints and Hamiltonian linear and quadratic in the momenta, respectively, is performed. The first reduce and then quantize and the first quantize and then reduce (Diracs) methods are compared. A source of ambiguities in this latter approach is pointed out and its relevance on issues concerning self-consistency and equivalence with the first reduce method is emphasized. One of the main results is the relation between the propagator obtained la Dirac and the propagator in the full space. As an application of the formalism developed, quantization on coset spaces of compact Lie groups is presented. In this case it is shown that a natural selection of a Dirac quantization allows for full self-consistency and equivalence. Finally, the specific case of the propagator on a two-dimensional sphere S2 viewed as the coset space SU(2)/U(1) is worked out. 1995 American Institute of Physics.
Resumo:
Starting from a recent model of the η′N interaction, we evaluate the η ′-nucleus optical potential, including the contribution of lowest order in density, tρ/2mη′, together with the second-order terms accounting for η′ absorption by two nucleons. We also calculate the formation cross section of the η′bound states from (π, p) reactions on nuclei. The η′-nucleus potential suffers from uncertainties tied to the poorly known η′N interaction, which can be partially constrained by the experimental modulus of the η′N scattering length and/or the recently measured transparency ratios in η′nuclear photoproduction. Assuming an attractive interaction and taking the claimed experimental value |aη′N|= 0.1 fm, we obtain an η′optical potential in nuclear matter at saturation density of Vη′=−(8.7 + 1.8i) MeV, not attractive enough to produce η′bound states in light nuclei. Larger values of the scattering length give rise to deeper optical potentials, with moderate enough imaginary parts. For a value |aη′N|= 0.3 fm, which can still be considered to lie within the uncertainties of the experimental constraints, the spectra of light and medium nuclei show clear structures associated to η′-nuclear bound states and to threshold enhancements in the unbound region.
Resumo:
Petrov types D and II perfect-fluid solutions are obtained starting from conformally flat perfect-fluid metrics and by using a generalized KerrSchild ansatz. Most of the Petrov type D metrics obtained have the property that the velocity of the fluid does not lie in the two-space defined by the principal null directions of the Weyl tensor. The properties of the perfect-fluid sources are studied. Finally, a detailed analysis of a new class of spherically symmetric static perfect-fluid metrics is given.
Resumo:
Geometric parameters of binary (1:1) PdZn and PtZn alloys with CuAu-L10 structure were calculated with a density functional method. Based on the total energies, the alloys are predicted to feature equal formation energies. Calculated surface energies of PdZn and PtZn alloys show that (111) and (100) surfaces exposing stoichiometric layers are more stable than (001) and (110) surfaces comprising alternating Pd (Pt) and Zn layers. The surface energy values of alloys lie between the surface energies of the individual components, but they differ from their composition weighted averages. Compared with the pure metals, the valence d-band widths and the Pd or Pt partial densities of states at the Fermi level are dramatically reduced in PdZn and PtZn alloys. The local valence d-band density of states of Pd and Pt in the alloys resemble that of metallic Cu, suggesting that a similar catalytic performance of these systems can be related to this similarity in the local electronic structures.
Resumo:
On the domain of general assignment games (with possible reservation prices) the core is axiomatized as the unique solution satisfying two consistency principles: projection consistency and derived consistency. Also, an axiomatic characterization of the nucleolus is given as the unique solution that satisfies derived consistency and equal maximum complaint between groups. As a consequence, we obtain a geometric characterization of the nucleolus. Maschler et al. (1979) provide a geometrical characterization for the intersection of the kernel and the core of a coalitional game, showing that those allocations that lie in both sets are always the midpoint of certain bargaining range between each pair of players. In the case of the assignment game, this means that the kernel can be determined as those core allocations where the maximum amount, that can be transferred without getting outside the core, from one agent to his / her optimally matched partner equals the maximum amount that he / she can receive from this partner, also remaining inside the core. We now prove that the nucleolus of the assignment game can be characterized by requiring this bisection property be satisfied not only for optimally matched pairs but also for optimally matched coalitions. Key words: cooperative games, assignment game, core, nucleolus
Resumo:
Estas notas corresponden a las exposiciones presentadas en el \emph{Primer Seminario de Integrabilidad}, dentro de lo que se denomina \emph{Aula de Sistemas Din\'amicos}. Durante este evento se realizaron seis conferencias, todas presentadas por miembros del grupo de Sistemas Din\'amicos de la UPC. El programa desarrollado fue el siguiente:\\\begin{center}AULA DE SISTEMAS DIN\'AMICOS\end{center}\begin{center}\texttt{http://www.ma1.upc.es/recerca/seminaris/aulasd-cat.html}\end{center}\begin{center}SEMINARIO DE INTEGRABILIDAD\end{center}\begin{center}Martes 29 y Mi\'ercoles 30 de marzo de 2005\\Facultad de Matem\'aticas y Estad\'{\i}stica, UPC\\Aula: Seminario 1\end{center}\bigskip\begin{center}PROGRAMA Y RES\'UMENES\end{center}{\bf Martes 29 de marzo}\begin{itemize}\item15:30. Juan J. Morales-Ruiz. \emph{El problema de laintegrabilidad en Sistemas Din\'amicos}\medskip {\bf Resumen.} En esta presentaci\'on se pretende dar unaidea de conjunto, pero sin entrar en detalles, sobre las diversasnociones de integrabilidad, asociadas a nombres de matem\'aticostan ilustres como Liouville, Galois-Picard-Vessiot, Lie, Darboux,Kowalevskaya, Painlev\'e, Poincar\'e, Kolchin, Lax, etc. Adem\'astambi\'en mencionaremos la revoluci\'on que supuso en los a\~nossesenta del siglo pasado el descubrimiento de Gardner, Green,Kruskal y Miura sobre un nuevo m\'etodo para resolver en algunoscasos determinadas ecuaciones en derivadas parciales. \medskip\item16:00. David G\'omez-Ullate. \emph{Superintegrabilidad, pares deLax y modelos de $N-$cuerpos en el plano}\medskip{\bf Resumen.} Introduciremos algunas t\'ecnicas cl\'asicas paraconstruir modelos de N-cuerpos integrables, como los pares de Laxo la din\'amica de los ceros de un polinomio. Revisaremos lanoci\'on de integrabilidad Liouville y superintegrabilidad, ydiscutiremos un nuevo m\'etodo debido a F. Calogero para contruirmodelos de N-cuerpos en el plano con muchas \'orbitasperi\'odicas. La exposici\'on se acompa\~nar\'a de animaciones delmovimiento de los cuerpos, y se plantear\'an algunos problemasabiertos.\medskip\item17:00. Pausa\medskip\item17:30. Yuri Fedorov. \emph{An\'alisis de Kovalevskaya--Painlev\'ey Sistemas Algebraicamente Integrables}\medskip{\bf Resumen.} Muchos sistemas integrables poseen una propiedadremarcable: todas sus soluciones son funciones meromorfas deltiempo como una variable compleja. Tal comportamiento, que serefiere como propiedad de Kovalevskaya-Painleve (KP) y que se usafrecuentemente como una ensayo de integrabilidad, no es accidentaly tiene unas ra\'{\i}ces geom\'etricas profundas. En esta charladescribiremos una clase de tales sistemas (conocidos como lossistemas algebraicamente integrables) y subrayaremos suspropiedades geom\'etricas principales que permiten predecir laestructura de las soluciones complejas y adem\'as encontrarlasexpl\'{\i}citamente. Eso lo ilustraremos con algunos sistemas dela mec\'anica cl\'asica. Tambi\'en mencionaremos unasgeneralizaciones \'utiles de la noci\'on de integrabilidadalgebraica y de la propiedad KP.\end{itemize}\medskip{\bf Mi\'ercoles 30 de marzo}\begin{itemize}\item 15:30. Rafael Ram\'{\i}rez-Ros. \emph{El m\'etodo de Poincar\'e}\medskip{\bf Resumen.} Dado un sistema Hamiltoniano aut\'onomo cercano acompletamente integrable Poincar\'e prob\'o que, en general, noexiste ninguna integral primera adicional uniforme en elpar\'ametro de perturbaci\'on salvo el propio Hamiltoniano.Esbozaremos las ideas principales del m\'etodo de prueba ycomentaremos algunas extensiones y generalizaciones.\newpage\item16:30. Chara Pantazi. \emph{El M\'etodo de Darboux}\medskip{\bf Resumen.} Darboux, en 1878, present\'o su m\'etodo paraconstruir integrales primeras de campos vectoriales polinomialesutilizando sus curvas invariantes algebraicas. En estaexposici\'on presentaremos algunas extensiones del m\'etodocl\'asico de Darboux y tambi\'en algunas aplicaciones.\medskip\item17:30. Pausa\medskip\item18:00. Juan J. Morales-Ruiz. \emph{M\'etodos recientes paradetectar la no integrabilidad}\medskip{\bf Resumen.} En 1982 Ziglin utiliza la estructura de laecuaci\'on en variaciones de Poincar\'e (sobre una curva integralparticular) como una herramienta fundamental para detectar la nointegrabilidad de un sistema Hamiltoniano. En esta charla sepretende dar una idea de esta aproximaci\'on a la nointegrabilidad, junto con t\'ecnicas m\'as recientes queinvolucran la teor\'{\i}a de Galois de ecuaciones diferencialeslineales, haciendo \'enfasis en los ejemplos m\'as que en lateor\'{\i}a general. Ilustraremos estos m\'etodos con resultadossobre la no integrabilidad de algunos problemas de $N$ cuerpos enMec\'anica Celeste.\end{itemize}
Resumo:
In numerical linear algebra, students encounter earlythe iterative power method, which finds eigenvectors of a matrixfrom an arbitrary starting point through repeated normalizationand multiplications by the matrix itself. In practice, more sophisticatedmethods are used nowadays, threatening to make the powermethod a historical and pedagogic footnote. However, in the contextof communication over a time-division duplex (TDD) multipleinputmultiple-output (MIMO) channel, the power method takes aspecial position. It can be viewed as an intrinsic part of the uplinkand downlink communication switching, enabling estimationof the eigenmodes of the channel without extra overhead. Generalizingthe method to vector subspaces, communication in thesubspaces with the best receive and transmit signal-to-noise ratio(SNR) is made possible. In exploring this intrinsic subspace convergence(ISC), we show that several published and new schemes canbe cast into a common framework where all members benefit fromthe ISC.
Resumo:
The relation between limit cycles of planar differential systems and the inverse integrating factor was first shown in an article of Giacomini, Llibre and Viano appeared in 1996. From that moment on, many research articles are devoted to the study of the properties of the inverse integrating factor and its relationwith limit cycles and their bifurcations. This paper is a summary of all the results about this topic. We include a list of references together with the corresponding related results aiming at being as much exhaustive as possible. The paper is, nonetheless, self-contained in such a way that all the main results on the inverse integrating factor are stated and a complete overview of the subject is given. Each section contains a different issue to which the inverse integrating factor plays a role: the integrability problem, relation with Lie symmetries, the center problem, vanishing set of an inverse integrating factor, bifurcation of limit cycles from either a period annulus or from a monodromic ω-limit set and some generalizations.
Resumo:
Maschler et al. (1979) caracteritzen geomètricament la intersecció del kernel i del core en els jocs cooperatius, demostrant que les distribucions que pertanyen a ambdós conjunts es troben en el punt mig d’un cert rang de negociació entre parelles de jugadors. En el cas dels jocs d’assignació, aquesta caracterització vol dir que el kernel només conté aquells elements del core on el màxim que un jugador pot transferir a una parella òptima és igual al màxim que aquesta parella li pot transferir, sense sortir-se’n del core. En aquest treball demostrem que el nucleolus d’un joc d’assignació queda caracteritzat si requerim que aquesta propietat de bisecció es compleixi no només per parelles, sinó també per coalicions entre sectors aparellades òptimament.