75 resultados para K-uniformly Convex Functions
Resumo:
Functional Data Analysis (FDA) deals with samples where a whole function is observedfor each individual. A particular case of FDA is when the observed functions are densityfunctions, that are also an example of infinite dimensional compositional data. In thiswork we compare several methods for dimensionality reduction for this particular typeof data: functional principal components analysis (PCA) with or without a previousdata transformation and multidimensional scaling (MDS) for diferent inter-densitiesdistances, one of them taking into account the compositional nature of density functions. The difeerent methods are applied to both artificial and real data (householdsincome distributions)
Resumo:
Compositional data analysis motivated the introduction of a complete Euclidean structure in the simplex of D parts. This was based on the early work of J. Aitchison (1986) and completed recently when Aitchinson distance in the simplex was associated with an inner product and orthonormal bases were identified (Aitchison and others, 2002; Egozcue and others, 2003). A partition of the support of a random variable generates a composition by assigning the probability of each interval to a part of the composition. One can imagine that the partition can be refined and the probability density would represent a kind of continuous composition of probabilities in a simplex of infinitely many parts. This intuitive idea would lead to a Hilbert-space of probability densitiesby generalizing the Aitchison geometry for compositions in the simplex into the set probability densities
Resumo:
”compositions” is a new R-package for the analysis of compositional and positive data.It contains four classes corresponding to the four different types of compositional andpositive geometry (including the Aitchison geometry). It provides means for computation,plotting and high-level multivariate statistical analysis in all four geometries.These geometries are treated in an fully analogous way, based on the principle of workingin coordinates, and the object-oriented programming paradigm of R. In this way,called functions automatically select the most appropriate type of analysis as a functionof the geometry. The graphical capabilities include ternary diagrams and tetrahedrons,various compositional plots (boxplots, barplots, piecharts) and extensive graphical toolsfor principal components. Afterwards, ortion and proportion lines, straight lines andellipses in all geometries can be added to plots. The package is accompanied by ahands-on-introduction, documentation for every function, demos of the graphical capabilitiesand plenty of usage examples. It allows direct and parallel computation inall four vector spaces and provides the beginner with a copy-and-paste style of dataanalysis, while letting advanced users keep the functionality and customizability theydemand of R, as well as all necessary tools to add own analysis routines. A completeexample is included in the appendix
Resumo:
Aitchison and Bacon-Shone (1999) considered convex linear combinations ofcompositions. In other words, they investigated compositions of compositions, wherethe mixing composition follows a logistic Normal distribution (or a perturbationprocess) and the compositions being mixed follow a logistic Normal distribution. Inthis paper, I investigate the extension to situations where the mixing compositionvaries with a number of dimensions. Examples would be where the mixingproportions vary with time or distance or a combination of the two. Practicalsituations include a river where the mixing proportions vary along the river, or acrossa lake and possibly with a time trend. This is illustrated with a dataset similar to thatused in the Aitchison and Bacon-Shone paper, which looked at how pollution in aloch depended on the pollution in the three rivers that feed the loch. Here, I explicitlymodel the variation in the linear combination across the loch, assuming that the meanof the logistic Normal distribution depends on the river flows and relative distancefrom the source origins
Resumo:
L'objectiu d'aquest treball és explicar i fer la crítica de la Teoria de la Veritat recentment defensada per Apel. En primer lloc, el consens i pragmàtica de la Teoria de la Veritat d'Apel es presenta en relació amb el projecte de la Teoria Crítica de la Societat de Habermas i el problema dels fonaments en el raonament ètic. En segon lloc, la seva versió idealitzada i transcendental de la Veritat que invoca la noció de convergència en una comunitat ideal d'investigadors lliures és analitzada. Finalment, les entranyes de l'esperit wingensteinià i després de l'últim anàlisi de Putnam, s’ha intentat fer una avaluació crítica. El resultat de tot això serà una més modesta concepció de la Veritat com a tan sols una qualitat de la praxi lingüística humana, però no la seva primera pedra
Constraint algorithm for k-presymplectic Hamiltonian systems. Application to singular field theories
Resumo:
The k-symplectic formulation of field theories is especially simple, since only tangent and cotangent bundles are needed in its description. Its defining elements show a close relationship with those in the symplectic formulation of mechanics. It will be shown that this relationship also stands in the presymplectic case. In a natural way,one can mimick the presymplectic constraint algorithm to obtain a constraint algorithmthat can be applied to k-presymplectic field theory, and more particularly to the Lagrangian and Hamiltonian formulations offield theories defined by a singular Lagrangian, as well as to the unified Lagrangian-Hamiltonian formalism (Skinner--Rusk formalism) for k-presymplectic field theory. Two examples of application of the algorithm are also analyzed.
Resumo:
Aquest treball presenta una forma de gestionar el perfil dels usuaris de l'aplicació gestora de videojocs educatius en xarxa k-Pax. Paral·lelament al desenvolupament del codi es realitza la documentació de gran part de la plataforma existent, de les accions necessàries per poder tenir-la en mode local i es mostren algunes guies per futurs desenvolupaments.
Resumo:
Este proyecto es una mejora sobre la plataforma k-Pax para tratar de realizar búsquedas avanzadas sobre los juegos educativos alojados en la misma.
Resumo:
The problem of stability analysis for a class of neutral systems with mixed time-varying neutral, discrete and distributed delays and nonlinear parameter perturbations is addressed. By introducing a novel Lyapunov-Krasovskii functional and combining the descriptor model transformation, the Leibniz-Newton formula, some free-weighting matrices, and a suitable change of variables, new sufficient conditions are established for the stability of the considered system, which are neutral-delay-dependent, discrete-delay-range dependent, and distributeddelay-dependent. The conditions are presented in terms of linear matrix inequalities (LMIs) and can be efficiently solved using convex programming techniques. Two numerical examples are given to illustrate the efficiency of the proposed method
Resumo:
Esta memoria trata de las mejoras propuestas en la plataforma educativa kPax de la UOC referentes a la gestión de usuarios.
Resumo:
The occurrence of negative values for Fukui functions was studied through the electronegativity equalization method. Using algebraic relations between Fukui functions and different other conceptual DFT quantities on the one hand and the hardness matrix on the other hand, expressions were obtained for Fukui functions for several archetypical small molecules. Based on EEM calculations for large molecular sets, no negative Fukui functions were found
Resumo:
Different procedures to obtain atom condensed Fukui functions are described. It is shown how the resulting values may differ depending on the exact approach to atom condensed Fukui functions. The condensed Fukui function can be computed using either the fragment of molecular response approach or the response of molecular fragment approach. The two approaches are nonequivalent; only the latter approach corresponds in general with a population difference expression. The Mulliken approach does not depend on the approach taken but has some computational drawbacks. The different resulting expressions are tested for a wide set of molecules. In practice one must make seemingly arbitrary choices about how to compute condensed Fukui functions, which suggests questioning the role of these indicators in conceptual density-functional theory
Resumo:
Selected configuration interaction (SCI) for atomic and molecular electronic structure calculations is reformulated in a general framework encompassing all CI methods. The linked cluster expansion is used as an intermediate device to approximate CI coefficients BK of disconnected configurations (those that can be expressed as products of combinations of singly and doubly excited ones) in terms of CI coefficients of lower-excited configurations where each K is a linear combination of configuration-state-functions (CSFs) over all degenerate elements of K. Disconnected configurations up to sextuply excited ones are selected by Brown's energy formula, ΔEK=(E-HKK)BK2/(1-BK2), with BK determined from coefficients of singly and doubly excited configurations. The truncation energy error from disconnected configurations, Δdis, is approximated by the sum of ΔEKS of all discarded Ks. The remaining (connected) configurations are selected by thresholds based on natural orbital concepts. Given a model CI space M, a usual upper bound ES is computed by CI in a selected space S, and EM=E S+ΔEdis+δE, where δE is a residual error which can be calculated by well-defined sensitivity analyses. An SCI calculation on Ne ground state featuring 1077 orbitals is presented. Convergence to within near spectroscopic accuracy (0.5 cm-1) is achieved in a model space M of 1.4× 109 CSFs (1.1 × 1012 determinants) containing up to quadruply excited CSFs. Accurate energy contributions of quintuples and sextuples in a model space of 6.5 × 1012 CSFs are obtained. The impact of SCI on various orbital methods is discussed. Since ΔEdis can readily be calculated for very large basis sets without the need of a CI calculation, it can be used to estimate the orbital basis incompleteness error. A method for precise and efficient evaluation of ES is taken up in a companion paper
Resumo:
A select-divide-and-conquer variational method to approximate configuration interaction (CI) is presented. Given an orthonormal set made up of occupied orbitals (Hartree-Fock or similar) and suitable correlation orbitals (natural or localized orbitals), a large N-electron target space S is split into subspaces S0,S1,S2,...,SR. S0, of dimension d0, contains all configurations K with attributes (energy contributions, etc.) above thresholds T0={T0egy, T0etc.}; the CI coefficients in S0 remain always free to vary. S1 accommodates KS with attributes above T1≤T0. An eigenproblem of dimension d0+d1 for S0+S 1 is solved first, after which the last d1 rows and columns are contracted into a single row and column, thus freezing the last d1 CI coefficients hereinafter. The process is repeated with successive Sj(j≥2) chosen so that corresponding CI matrices fit random access memory (RAM). Davidson's eigensolver is used R times. The final energy eigenvalue (lowest or excited one) is always above the corresponding exact eigenvalue in S. Threshold values {Tj;j=0, 1, 2,...,R} regulate accuracy; for large-dimensional S, high accuracy requires S 0+S1 to be solved outside RAM. From there on, however, usually a few Davidson iterations in RAM are needed for each step, so that Hamiltonian matrix-element evaluation becomes rate determining. One μhartree accuracy is achieved for an eigenproblem of order 24 × 106, involving 1.2 × 1012 nonzero matrix elements, and 8.4×109 Slater determinants
Resumo:
Linear response functions are implemented for a vibrational configuration interaction state allowing accurate analytical calculations of pure vibrational contributions to dynamical polarizabilities. Sample calculations are presented for the pure vibrational contributions to the polarizabilities of water and formaldehyde. We discuss the convergence of the results with respect to various details of the vibrational wave function description as well as the potential and property surfaces. We also analyze the frequency dependence of the linear response function and the effect of accounting phenomenologically for the finite lifetime of the excited vibrational states. Finally, we compare the analytical response approach to a sum-over-states approach