49 resultados para Jet fluid


Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND AND PURPOSE: The high variability of CSF volumes partly explains the inconsistency of anesthetic effects, but may also be due to image analysis itself. In this study, criteria for threshold selection are anatomically defined. METHODS: T2 MR images (n = 7 cases) were analyzed using 3-dimentional software. Maximal-minimal thresholds were selected in standardized blocks of 50 slices of the dural sac ending caudally at the L5-S1 intervertebral space (caudal blocks) and middle L3 (rostral blocks). Maximal CSF thresholds: threshold value was increased until at least one voxel in a CSF area appeared unlabeled and decreased until that voxel was labeled again: this final threshold was selected. Minimal root thresholds: thresholds values that selected cauda equina root area but not adjacent gray voxels in the CSF-root interface were chosen. RESULTS: Significant differences were found between caudal and rostral thresholds. No significant differences were found between expert and nonexpert observers. Average max/min thresholds were around 1.30 but max/min CSF volumes were around 1.15. Great interindividual CSF volume variability was detected (max/min volumes 1.6-2.7). CONCLUSIONS: The estimation of a close range of CSF volumes which probably contains the real CSF volume value can be standardized and calculated prior to certain intrathecal procedures

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The microenvironment of the central nervous system is important for neuronal function and development. During the early stages of embryo development the cephalic vesicles are filled by embryonic cerebrospinal fluid, a complex fluid containing different protein fractions, which contributes to the regulation of the survival, proliferation and neurogenesis of neuroectodermal stem cells. The protein content of embryonic cerebrospinal fluid from chick and rat embryos at the start of neurogenesis has already been determined. Most of the identified gene products are thought to be involved in the regulation of developmental processes during embryogenesis. However, due to the crucial roles played by embryonic cerebrospinal fluid during brain development, the embryological origin of the gene products it contains remains an intriguing question. According to the literature most of these products are synthesised in embryonic tissues other than the neuroepithelium. In this study we examined the embryological origin of the most abundant embryonic cerebrospinal fluid protein fractions by means of slot-blot analysis and by using several different embryonic and extraembryonic protein extracts, immunodetected with polyclonal antibodies. This first attempt to elucidate their origin is not based on the proteins identified by proteomic methods, but rather on crude protein fractions detected by SDS-PAGE analysis and to which polyclonal antibodies were specifically generated. Despite some of the limitations of this study, i.e. that one protein fraction may contain more than one gene product, and that a specific gene product may be contained in different protein fractions depending on post-translational modifications, our results show that most of the analysed protein fractions are not produced by the cephalic neuroectoderm but are rather stored in the egg reservoir; furthermore, few are produced by embryo tissues, thus indicating that they must be transported from their production or storage sites to the cephalic cavities, most probably via embryonic serum. These results raise the question as to whether the transfer of proteins from these two embryo compartments is regulated at this early developmental stage.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Intraocular pressure (IOP) is the pressure inside the eye that helps to maintain the integrity and the suitable form of the ocular globe. Precise and accurate measures of IOP are needed for the diagnosis as well as follow-up of glaucoma. In daily clinical practice, Goldmann applanation tonometer (GAT) and Non-contact tonometer (NCT) are the most common devices for measuring IOP. A close agreement between these methods has been showed, particularly in normotensive patients and a poor agreement, especially when IOP levels are above the normal range. Ophthalmologists have noticed a poor agreement between NCT and GAT, observing that by using NCT and after comparing with GAT, there is an overestimation of IOP readings, and particularly it occurs when the eyes are tearful. Previous studies investigate the effect of tears in Non-contact tonometer readings by the instillation of artificial tears, concluding in one of the studies that the variation was less than 1mmHg and not clinically significant, in contrast with another study which the increases were sadistically significant. Tear menisci are a thin strip of tear fluid located between the bulbar conjunctiva and the eyelid margins. We think that the overestimation of IOP readings using NCT could be due to the presence of a higher volume of tear in the lower tear meniscus which might cause an optical interference in the optoelectronic applanation monitoring system of this deviceObjectives: To research the influence of a certain volume of fluid in the lower tear meniscus on IOP measurements using the NCT in healthy eyes. Moreover, to investigate the agreement between IOP readings obtained by NCT and GAT in the presence and absence of this volume of fluidMethods: The study design will be transversal for diagnostic tests of repeated measures. We will study patients with no ocular pathology and IOP<21mmHg. It will consist in the measurement of IOP using NCT before and after the instillation of COLIRCUSÍ FLUOTEST, used as a volume of fluid in the lower tear meniscus, to observe if there will be differences using the paired t-test. Moreover, we will take IOP measures by GAT in order to know the agreement between these methods after and before the application of these eyedrops, using the ICC (intraclass correlation coefficient) and the Bland-Altmann method

Relevância:

20.00% 20.00%

Publicador: