48 resultados para Hierarchical Regression Analysis


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Work-related flow is defined as a sudden and enjoyable merging of action and awareness that represents a peak experience in the daily lives of workers. Employees" perceptions of challenge and skill and their subjective experiences in terms of enjoyment, interest and absorption were measured using the experience sampling method, yielding a total of 6981 observations from a sample of 60 employees. Linear and nonlinear approaches were applied in order to model both continuous and sudden changes. According to the R2, AICc and BIC indexes, the nonlinear dynamical systems model (i.e. cusp catastrophe model) fit the data better than the linear and logistic regression models. Likewise, the cusp catastrophe model appears to be especially powerful for modelling those cases of high levels of flow. Overall, flow represents a nonequilibrium condition that combines continuous and abrupt changes across time. Research and intervention efforts concerned with this process should focus on the variable of challenge, which, according to our study, appears to play a key role in the abrupt changes observed in work-related flow.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The present work deals with quantifying group characteristics. Specifically, dyadic measures of interpersonal perceptions were used to forecast group performance. 46 groups of students, 24 of four and 22 of five people, were studied in a real educational assignment context and marks were gathered as an indicator of group performance. Our results show that dyadic measures of interpersonal perceptions account for final marks. By means of linear regression analysis 85% and 85.6% of group performance was respectively explained for group sizes equal to four and five. Results found in the scientific literature based on the individualistic approach are no larger than 18%. The results of the present study support the utility of dyadic approaches for predicting group performance in social contexts.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The present study focuses on single-case data analysis and specifically on two procedures for quantifying differences between baseline and treatment measurements The first technique tested is based on generalized least squares regression analysis and is compared to a proposed non-regression technique, which allows obtaining similar information. The comparison is carried out in the context of generated data representing a variety of patterns (i.e., independent measurements, different serial dependence underlying processes, constant or phase-specific autocorrelation and data variability, different types of trend, and slope and level change). The results suggest that the two techniques perform adequately for a wide range of conditions and researchers can use both of them with certain guarantees. The regression-based procedure offers more efficient estimates, whereas the proposed non-regression procedure is more sensitive to intervention effects. Considering current and previous findings, some tentative recommendations are offered to applied researchers in order to help choosing among the plurality of single-case data analysis techniques.