161 resultados para Geometria algebraica aritmètica


Relevância:

20.00% 20.00%

Publicador:

Resumo:

"Vegeu el resum a l'inici del document del fitxer adjunt."

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Treball de recerca realitzat per un alumne d’ensenyament secundari i guardonat amb un Premi CIRIT per fomentar l'esperit científic del Jovent l’any 2008. Es presenta als interessats en les competicions de matemàtiques un manual sòlid, compacte, però sintetitzat, que els permeti, complementar i ampliar els seus coneixements matemàtics dirigits a aquestes competicions. En la primera part, es tracten les olimpíades matemàtiques més importants estatals i arreu del món per tal de donar-les a conèixer al lector. A continuació s'expliquen les tècniques generals més utilitzades per construir una demostració determinada. Finalment, es tanca la secció parlant de la creació de problemes, un apartat que permet estimular i potenciar la pròpia creativitat. En la segona part, es troba el propi cos del manual, amb una gran quantitat de problemas solucionats. Per tal de facilitar-ne l'ús, s'ha dividit en quatre grans temes, corresponents als que es treballen a les Olimpíades Matemàtiques: teoria de nombres o aritmètica, geometria, àlgebra i combinatòria. Cada un d'aquests temes es troba, a la vegada, dividit en dues seccions: la de teoremes i conceptes, en què s'enuncien els principals teoremes i fórmules que el lector necessita conéixer, i la d'exercicis i problemes on s’han recollit multitud de problemes provinents de diferents competicions, indicant el grau de dificultat - cal remarcar però, que el present document és una reducció del treball original, per això s'ha decidit només incloure-hi l'apartat d'aritmètica i ometre els altres tres -.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

La proposta de tesi pren com a punt de partida les respostes artístiques i teòriques dutes a terme a partir dels anys seixanta contra un context de coneixement tradicional fonamentalment racionalista, que segueix la tradició lògica de la modernitat i que troba el seu reflex i aplicació social en l’ordre espaial i per extensió, en la geometria. Un cop descrites les nocions que d’aquesta modernitat han estat aplicades a l’art dels anys 50 i 60, es mostra com les crítiques de determinats filòsofs i artistes han anat conformant un corpus teòric i artístic que ha implicat un intent d’enderrocament d’aquest sistema tradicional de coneixement, interpretació, lectura i atorgament de sentit a les obres artístiques. Aquests són: M.Foucault, J.Derrida, R. Smithson, R. Serra, R. Morris, Mona Hatoum, Imi Knoebel o Tacita Dean, entre d’altres. Seguidament es presenta un anàlisi més profund i detallat d’aquelles respostes artístiques més paradigmàtiques, tant al sistema de pensament tradicional com a l’ordre espaial que aquest conseqüentment implica. Aquestes crítiques s’organitzen en dues parts antagòniques: l’una és “L’adveniment del caos”, i l’altra és la “Crítica de l’ordre”. Els artistes són: L. Bourgeois, E.Hesse, A.Mendieta i P.Halley. En una tercera part, es descriu com aquest inici deconstructor del paradigma de coneixement tradicional iniciat als anys seixanta es desenvolupa durant els següents vint anys tenint en aquest cas com a fonament teòric les crítiques de R.Krauss, J. Baudrillard, P.Virilio, i com artistes els arquitectes P. Eienmann i F. Gehri, entre d’altres. La conclusió fonamental d’aquests apartats intenta posar de manifest la subversió o infracció de la geometria com a contenidora dels conceptes de la modernitat: raó i ordre moral. Finalment, en una quarta part s’inclou el propi projecte artístic que representa l’experimentació i praxi de les conclusions teòriques d’aquesta tesi.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

En aquest treball es tracten qüestions de la geometria integral clàssica a l'espai hiperbòlic i projectiu complex i a l'espai hermític estàndard, els anomenats espais de curvatura holomorfa constant. La geometria integral clàssica estudia, entre d'altres, l'expressió en termes geomètrics de la mesura de plans que tallen un domini convex fixat de l'espai euclidià. Aquesta expressió es dóna en termes de les integrals de curvatura mitja. Un dels resultats principals d'aquest treball expressa la mesura de plans complexos que tallen un domini fixat a l'espai hiperbòlic complex, en termes del que definim com volums intrínsecs hermítics, que generalitzen les integrals de curvatura mitja. Una altra de les preguntes que tracta la geometria integral clàssica és: donat un domini convex i l'espai de plans, com s'expressa la integral de la s-èssima integral de curvatura mitja del convex intersecció entre un pla i el convex fixat? A l'espai euclidià, a l'espai projectiu i hiperbòlic reals, aquesta integral correspon amb la s-èssima integral de curvatura mitja del convex inicial: se satisfà una propietat de reproductibitat, que no es té en els espais de curvatura holomorfa constant. En el treball donem l'expressió explícita de la integral de la curvatura mitja quan integrem sobre l'espai de plans complexos. L'expressem en termes de la integral de curvatura mitja del domini inicial i de la integral de la curvatura normal en una direcció especial: l'obtinguda en aplicar l'estructura complexa al vector normal. La motivació per estudiar els espais de curvatura holomorfa constant i, en particular, l'espai hiperbòlic complex, es troba en l'estudi del següent problema clàssic en geometria. Quin valor pren el quocient entre l'àrea i el perímetre per a successions de figures convexes del pla que creixen tendint a omplir-lo? Fins ara es coneixia el comportament d'aquest quocient en els espais de curvatura seccional negativa i que a l'espai hiperbòlic real les fites obtingudes són òptimes. Aquí provem que a l'espai hiperbòlic complex, les cotes generals no són òptimes i optimitzem la superior.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Projecte de recerca elaborat a partir d’una estada a la Università degli studi di Siena, Italy , entre 2007 i 2009. El projecte ha consistit en un estudi de la formalització lògica del raonament en presència de vaguetat amb els mètodes de la Lògica Algebraica i de la Teoria de la Prova. S'ha treballat fonamental en quatre direccions complementàries. En primer lloc, s'ha proposat un nou plantejament, més abstracte que el paradigma dominant fins ara, per l'estudi dels sistemes de lògica borrosa. Fins ara en l'estudi d'aquests sistemes l'atenció havia recaigut essencialment en l'obtenció de semàntiques basades en tnormes contínues (o almenys contínues per l'esquerra). En primer nivell de major abstracció hem estudiat les propietats de completesa de les lògiques borroses (tant proposicionals com de primer ordre) respecte de semàntiques definides sobre qualsevol cadena de valors de veritat, no necessàriament només sobre l'interval unitat dels nombres reals. A continuació, en un nivell encara més abstracte, s’ha pres l'anomenada jerarquia de Leibniz de la Lògica Algebraica Abstracta que classifica tots els sistemes lògics amb un bon comportament algebraic i s'ha expandit a una nova jerarquia (que anomenem implicacional) que permet definir noves classes de lògiques borroses que contenen quasi totes les conegudes fins ara. En segon lloc, s’ha continuat una línia d'investigació iniciada els darrers anys consistent en l'estudi de la veritat parcial com a noció sintàctica (és a dir, com a constants de veritat explícites en els sistemes de prova de les lògiques borroses). Per primer cop, s’ha considerat la semàntica racional per les lògiques proposicionals i la semàntica real i racional per les lògiques de primer ordre expandides amb constants. En tercer lloc, s’ha tractat el problema més fonamental del significat i la utilitat de les lògiques borroses com a modelitzadores de (part de) els fenòmens de la vaguetat en un darrer article de caràcter més filosòfic i divulgatiu, i en un altre més tècnic en què defensem la necessitat i presentem l'estat de l'art de l'estudi de les estructures algèbriques associades a les lògiques borroses. Finalment, s’ha dedicat la darrera part del projecte a l'estudi de la complexitat aritmètica de les lògiques borroses de primer ordre.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Treball que té com a objectiu, en primer lloc, establir quina possibilitat té el convencionalisme de ser una alternativa a les concepcions realistes de la geometria relativista; en segon lloc, assenyalar les implicacions epistemològiques que en deriven; en tercer lloc, precisar quin tipus de lectura de la hipòtesi inicial hem de fer donat que hi ha un cert marge per a l’ambigüitat i això ha permès diverses propostes; i en quart i darrer lloc, en cas que hom accepti les restriccions que el convencionalisme imposa al nostre coneixement, hem de veure quines conclusions podem extreure en l’àmbit ontològic i fins a quin punt són significatives per a la discussió sobre la relació entre matemàtica i naturalesa

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aquests instants memorables, que en general formen la part més noble de les monografies i revistes científiques, es produeixen sempre, és clar, al final de la 'línia de producció i sovint ens fan oblidar la primordial importància deis processos intermedis,en els quals les eines per a la generació d'idees i enunciats, i per al seu refinamentprogressiu, són ordinàriament molt més variades. De fet és una opinió força estesa,almenys entre els investigadors, que en aquests processos intermedis 'de gestació' éson realment rau el major atractiu de la recerca, on hi tenen una funció l'especulació,l'analogia, la simulació, la hipòtesi de treball, la conjectura o la predicció (6), tot i quemalauradament sovint no en resta cap reflex, especialment en el cas dels matemàtics,en les conclusions finals dels treballs (1).Els paràgrafs precedents no són res més que una presentació en miniatura deqüestions que resulten ser, per més clares que semblin a primera vista, delicadesi controvertides quan se'n fa un escrutini més reposat. No disposant de l'espai nidel temps que caldria per a una anàlisi detallada, el lector que desitgi aprofundir enaquesta direcció haurà de consultar obres adients sobre aquests temes (8). En tot cas,en la resta d'aquesta secció exposem a1guns exemples per il•lustrar alguns deis puntsmés destacats de les idees anteriors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Gauss va publicar l’any 1827 Disquisitiones generales circa superficies curvas, obra que ha resultat fonamental en el desenvolupament de la geometria diferencial a partir del segle XIX. La documentació de la qual es disposa sobre la gènesi i el desenvolupament de les idees d’aquesta obra, ens permet, a més de presentar els principals resultats que hi apareixen, fer una aproximació a la figura de Gauss, al seu estil matemàtic

Relevância:

20.00% 20.00%

Publicador:

Resumo:

La reflexió sobre la naturalesa de les dades composicionals i sobre la metodologia estadística específica per a la seva anàlisi condueix a la construcció de l'espai de les composicions i a la seva estructuració com un espai vectorial euclidià, del qual el símplex n'és l'espai suport. S'il·lustren sobre el diagrama ternari alguns dels elements més característics d'aquesta geometria

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Estas notas corresponden a las exposiciones presentadas en el \emph{Primer Seminario de Integrabilidad}, dentro de lo que se denomina \emph{Aula de Sistemas Din\'amicos}. Durante este evento se realizaron seis conferencias, todas presentadas por miembros del grupo de Sistemas Din\'amicos de la UPC. El programa desarrollado fue el siguiente:\\\begin{center}AULA DE SISTEMAS DIN\'AMICOS\end{center}\begin{center}\texttt{http://www.ma1.upc.es/recerca/seminaris/aulasd-cat.html}\end{center}\begin{center}SEMINARIO DE INTEGRABILIDAD\end{center}\begin{center}Martes 29 y Mi\'ercoles 30 de marzo de 2005\\Facultad de Matem\'aticas y Estad\'{\i}stica, UPC\\Aula: Seminario 1\end{center}\bigskip\begin{center}PROGRAMA Y RES\'UMENES\end{center}{\bf Martes 29 de marzo}\begin{itemize}\item15:30. Juan J. Morales-Ruiz. \emph{El problema de laintegrabilidad en Sistemas Din\'amicos}\medskip {\bf Resumen.} En esta presentaci\'on se pretende dar unaidea de conjunto, pero sin entrar en detalles, sobre las diversasnociones de integrabilidad, asociadas a nombres de matem\'aticostan ilustres como Liouville, Galois-Picard-Vessiot, Lie, Darboux,Kowalevskaya, Painlev\'e, Poincar\'e, Kolchin, Lax, etc. Adem\'astambi\'en mencionaremos la revoluci\'on que supuso en los a\~nossesenta del siglo pasado el descubrimiento de Gardner, Green,Kruskal y Miura sobre un nuevo m\'etodo para resolver en algunoscasos determinadas ecuaciones en derivadas parciales. \medskip\item16:00. David G\'omez-Ullate. \emph{Superintegrabilidad, pares deLax y modelos de $N-$cuerpos en el plano}\medskip{\bf Resumen.} Introduciremos algunas t\'ecnicas cl\'asicas paraconstruir modelos de N-cuerpos integrables, como los pares de Laxo la din\'amica de los ceros de un polinomio. Revisaremos lanoci\'on de integrabilidad Liouville y superintegrabilidad, ydiscutiremos un nuevo m\'etodo debido a F. Calogero para contruirmodelos de N-cuerpos en el plano con muchas \'orbitasperi\'odicas. La exposici\'on se acompa\~nar\'a de animaciones delmovimiento de los cuerpos, y se plantear\'an algunos problemasabiertos.\medskip\item17:00. Pausa\medskip\item17:30. Yuri Fedorov. \emph{An\'alisis de Kovalevskaya--Painlev\'ey Sistemas Algebraicamente Integrables}\medskip{\bf Resumen.} Muchos sistemas integrables poseen una propiedadremarcable: todas sus soluciones son funciones meromorfas deltiempo como una variable compleja. Tal comportamiento, que serefiere como propiedad de Kovalevskaya-Painleve (KP) y que se usafrecuentemente como una ensayo de integrabilidad, no es accidentaly tiene unas ra\'{\i}ces geom\'etricas profundas. En esta charladescribiremos una clase de tales sistemas (conocidos como lossistemas algebraicamente integrables) y subrayaremos suspropiedades geom\'etricas principales que permiten predecir laestructura de las soluciones complejas y adem\'as encontrarlasexpl\'{\i}citamente. Eso lo ilustraremos con algunos sistemas dela mec\'anica cl\'asica. Tambi\'en mencionaremos unasgeneralizaciones \'utiles de la noci\'on de integrabilidadalgebraica y de la propiedad KP.\end{itemize}\medskip{\bf Mi\'ercoles 30 de marzo}\begin{itemize}\item 15:30. Rafael Ram\'{\i}rez-Ros. \emph{El m\'etodo de Poincar\'e}\medskip{\bf Resumen.} Dado un sistema Hamiltoniano aut\'onomo cercano acompletamente integrable Poincar\'e prob\'o que, en general, noexiste ninguna integral primera adicional uniforme en elpar\'ametro de perturbaci\'on salvo el propio Hamiltoniano.Esbozaremos las ideas principales del m\'etodo de prueba ycomentaremos algunas extensiones y generalizaciones.\newpage\item16:30. Chara Pantazi. \emph{El M\'etodo de Darboux}\medskip{\bf Resumen.} Darboux, en 1878, present\'o su m\'etodo paraconstruir integrales primeras de campos vectoriales polinomialesutilizando sus curvas invariantes algebraicas. En estaexposici\'on presentaremos algunas extensiones del m\'etodocl\'asico de Darboux y tambi\'en algunas aplicaciones.\medskip\item17:30. Pausa\medskip\item18:00. Juan J. Morales-Ruiz. \emph{M\'etodos recientes paradetectar la no integrabilidad}\medskip{\bf Resumen.} En 1982 Ziglin utiliza la estructura de laecuaci\'on en variaciones de Poincar\'e (sobre una curva integralparticular) como una herramienta fundamental para detectar la nointegrabilidad de un sistema Hamiltoniano. En esta charla sepretende dar una idea de esta aproximaci\'on a la nointegrabilidad, junto con t\'ecnicas m\'as recientes queinvolucran la teor\'{\i}a de Galois de ecuaciones diferencialeslineales, haciendo \'enfasis en los ejemplos m\'as que en lateor\'{\i}a general. Ilustraremos estos m\'etodos con resultadossobre la no integrabilidad de algunos problemas de $N$ cuerpos enMec\'anica Celeste.\end{itemize}

Relevância:

20.00% 20.00%

Publicador:

Resumo:

En este art\'\i culo se presenta, con una gran variedad de ejemplos, unm\'etodo para sacar ra\'\i ces cuadradas exactas. Este m\'etodo se present\'opor primera vez hace 15 a\~nos con el nombre de ley Costeana, pero adiferencia de ahora se enfatiza en el hecho que puede ser implementadoen el curso de cuarto de primaria, al cual asiste la autora (primer autor)de este articulo.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mediante la combinación de métodos geomorfológicos y sondeos eléctricos, se han estudiado 6 cubetas lacustres cuaternarias de origen glacial en el Pirineo. Esterri d'Aneu, Benasque y Bono son unos claros ejemplos de cubetas de sobreexcavación glacial. El Seminari de Vilaller constituye un ambiente lacustre proglacial debido a un cierre morrénico. El lago de Taüll como ejemplo de un ambiente lacustre yuxtaglacial debido también a una obturación morrénica y la laguna de Les Basses d'Ules, en el valle de Arán, formada a partir de procesos de fracturación del substrato rocoso después de la retirada del glaciar del Garona. Debido al elevado contraste entre la resistividad de los diferentes materiales cuaternarios de recubrimiento y el substrato rocoso, se ha podido determinar mediante sondeos eléctricos el espesor del cuaternario y diferenciar las diversas formaciones que lo constituyen. En general, aparecen 3 formaciones cuaternarias sobre el substrato rocoso paleowico: una unidad glaciolacustre que es relativamente conductora, una unidad fluviodeltaica de resistividad variable pero con valores más elevados que la anterior, y una unidad superior de resistividades muy variables según la cubeta y que, en general, es más resistente. La potencia del relleno cuaternario es muy variable según la cubeta. Así encontramos espesores de más de 300 metros de media en la cubeta de Esterri d'Aneu y de tan solo unos pocos metros en Les Basses d'Ules.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We describe an equivalence of categories between the category of mixed Hodge structures and a category of vector bundles on the toric complex projective plane which verify some semistability condition. We then apply this correspondence to define an invariant which generalises the notion of R-split mixed Hodge structure and compute extensions in the category of mixed Hodge structures in terms of extensions of the corresponding vector bundles. We also give a relative version of this correspondence and apply it to define stratifications of the bases of the variations of mixed Hodge structure.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We consider the Kudla-Millson lift from elliptic modular forms of weight (p+q)/2 to closed q-forms on locally symmetric spaces corresponding to the orthogonal group O(p,q). We study the L²-norm of the lift following the Rallis inner product formula. We compute the contribution at the Archimedian place. For locally symmetric spaces associated to even unimodular lattices, we obtain an explicit formula for the L²-norm of the lift, which often implies that the lift is injective. For O(p,2) we discuss how such injectivity results imply the surjectivity of the Borcherds lift.