54 resultados para GLASS-FORMING LIQUIDS
Resumo:
Preparation of (S)-1-chloro-2-octanol and (S)-1-bromo-2-octanol was carried out by the enzymatic hydrolysis of halohydrin palmitates using biocatalysts. Halohydrin palmitates were prepared by various methods from palmitic acid and 1,2-octanediol. A tandem hydrolysis was carried out using lipases from Candida antarctica (Novozym® 435), Rhizomucor miehei (Lipozyme IM), and “resting cells” from a Rhizopus oryzae strain that was not mycotoxigenic. The influence of the enzyme and the reaction medium on the selective hydrolysis of isomeric mixtures of halohydrin esters is described. Novozym® 435 allowed preparation of (S)-1-chloro-2-octanol and (S)-1-bromo-2-octanol after 1–3 h ofreaction at 40 °C in [BMIM][PF6].
Resumo:
A sign of presence in virtual environments is that people respond to situations and events as if they were real, where response may be considered at many different levels, ranging from unconscious physiological responses through to overt behavior,emotions, and thoughts. In this paper we consider two responses that gave different indications of the onset of presence in a gradually forming environment. Two aspects of the response of people to an immersive virtual environment were recorded: their eye scanpath, and their skin conductance response (SCR). The scenario was formed over a period of 2 min, by introducing an increasing number of its polygons in random order in a head-tracked head-mounted display. For one group of experimental participants (n 8) the environment formed into one in which they found themselves standing on top of a 3 m high column. For a second group of participants (n 6) the environment was otherwise the same except that the column was only 1 cm high, so that they would be standing at normal ground level. For a third group of participants (n 14) the polygons never formed into a meaningful environment. The participants who stood on top of the tall column exhibited a significant decrease in entropy of the eye scanpath and an increase in the number of SCR by 99 s into the scenario, at a time when only 65% of the polygons had been displayed. The ground level participants exhibited a similar decrease in scanpath entropy, but not the increase in SCR. The random scenario grouping did not exhibit this decrease in eye scanpath entropy. A drop in scanpath entropy indicates that the environment had cohered into a meaningful perception. An increase in the rate of SCR indicates the perception of an aversive stimulus. These results suggest that on these two dimensions (scanpath entropy and rate of SCR) participants were responding realistically to the scenario shown in the virtual environment. In addition, the response occurred well before the entire scenario had been displayed, suggesting that once a set of minimal cues exists within a scenario,it is enough to form a meaningful perception. Moreover, at the level of the sympathetic nervous system, the participants who were standing on top of the column exhibited arousal as if their experience might be real. This is an important practical aspect of the concept of presence.
Resumo:
After the release of the gamma-ray source catalog produced by the Fermi satellite during its first two years of operation, a significant fraction of sources still remain unassociated at lower energies. In addition to well-known high-energy emitters (pulsars, blazars, supernova remnants, etc.), theoretical expectations predict new classes of gamma-ray sources. In particular, gamma-ray emission could be associated with some of the early phases of stellar evolution, but this interesting possibility is still poorly understood. Aims: The aim of this paper is to assess the possibility of the Fermi gamma-ray source 2FGL J0607.5-0618c being associated with the massive star forming region Monoceros R2. Methods: A multi-wavelength analysis of the Monoceros R2 region is carried out using archival data at radio, infrared, X-ray, and gamma-ray wavelengths. The resulting observational properties are used to estimate the physical parameters needed to test the different physical scenarios. Results: We confirm the 2FGL J0607.5-0618c detection with improved confidence over the Fermi two-year catalog. We find that a combined effect of the multiple young stellar objects in Monoceros R2 is a viable picture for the nature of the source.
Resumo:
A broad and simple method permitted halide ions in quaternary heteroaromatic and ammonium salts to be exchanged for a variety of anions using an anion exchange resin (A− form) in non-aqueous media. The anion loading of the AER (OH− form) was examined using two different anion sources, acids or ammonium salts, and changing the polarity of the solvents. The AER (A− form) method in organic solvents was then applied to several quaternary heteroaromatic salts and ILs, and the anion exchange proceeded in excellent to quantitative yields, concomitantly removing halide impurities. Relying on the hydrophobicity of the targeted ion pair for the counteranion swap, organic solvents with variable polarity were used, such as CH3OH, CH3CN and the dipolar nonhydroxylic solvent mixture CH3CN:CH2Cl2 (3:7) and the anion exchange was equally successful with both lipophilic cations and anions.
Resumo:
We present computer simulations of a simple bead-spring model for polymer melts with intramolecular barriers. By systematically tuning the strength of the barriers, we investigate their role on the glass transition. Dynamic observables are analyzed within the framework of the mode coupling theory (MCT). Critical nonergodicity parameters, critical temperatures, and dynamic exponents are obtained from consistent fits of simulation data to MCT asymptotic laws. The so-obtained MCT λ-exponent increases from standard values for fully flexible chains to values close to the upper limit for stiff chains. In analogy with systems exhibiting higher-order MCT transitions, we suggest that the observed large λ-values arise form the interplay between two distinct mechanisms for dynamic arrest: general packing effects and polymer-specific intramolecular barriers. We compare simulation results with numerical solutions of the MCT equations for polymer systems, within the polymer reference interaction site model (PRISM) for static correlations. We verify that the approximations introduced by the PRISM are fulfilled by simulations, with the same quality for all the range of investigated barrier strength. The numerical solutions reproduce the qualitative trends of simulations for the dependence of the nonergodicity parameters and critical temperatures on the barrier strength. In particular, the increase in the barrier strength at fixed density increases the localization length and the critical temperature. However the qualitative agreement between theory and simulation breaks in the limit of stiff chains. We discuss the possible origin of this feature.
Resumo:
This article presents the results of a study of the efficiency of silanation process of calcium phosphate glasses particles and its effect on the bioactivity behavior of glasspoly( methyl methacrylate) (PMMA) composites. Two different calcium phosphate glasses: 44.5CaO-44.5P2O5-11Na2O (BV11) and 44.5CaO-44.5P2O5-6Na2O-5TiO2 (G5) were synthesized and treated with silane coupling agent. The glasses obtained were characterized by Microprobe and BET while the efficiency of silanation process was determined using Fourier Transform Infrared Spectroscopy (FTIR), X-ray Photoelectron Spectroscopy (XPS) and Thermal Analysis (DTA and TG)techniques. The content of coupling agent chemically tightly bond to the silanated glasses ascended to 1.69 6 0.02 wt % for BV11sil glass and 0.93 6 0.01 wt % for G5sil glass. The in vitro bioactivity test carried out in Simulated Body Fluid (SBF) revealed certain bioactive performance with the use of both silanated glasses in a 30% (by weight) as filler of the PMMA composites because of a superficial deposition of an apatite-like layer with low content of CO3 22 and HPO4 22 in its structure after soaking for 30 days occurred. VC 2013 Wiley Periodicals,Inc. J Biomed Mater Res Part B: Appl Biomater 00B: 000-000, 2013.
Resumo:
This article reports the phase behavior determi- nation of a system forming reverse liquid crystals and the formation of novel disperse systems in the two-phase region. The studied system is formed by water, cyclohexane, and Pluronic L-121, an amphiphilic block copolymer considered of special interest due to its aggregation and structural proper- ties. This system forms reverse cubic (I2) and reverse hexagonal (H2) phases at high polymer concentrations. These reverse phases are of particular interest since in the two-phase region, stable high internal phase reverse emulsions can be formed. The characterization of the I2 and H2 phases and of the derived gel emulsions was performed with small-angle X-ray scattering (SAXS) and rheometry, and the influence of temperature and water content was studied. TheH2 phase experimented a thermal transition to an I2 phase when temperature was increased, which presented an Fd3m structure. All samples showed a strong shear thinning behavior from low shear rates. The elasticmodulus (G0) in the I2 phase was around 1 order of magnitude higher than in theH2 phase. G0 was predominantly higher than the viscousmodulus (G00). In the gel emulsions,G0 was nearly frequency-independent, indicating their gel type nature. Contrarily to water-in-oil (W/O) normal emulsions, in W/I2 and W/H2 gel emulsions, G0, the complex viscosity (|η*|), and the yield stress (τ0) decreased with increasing water content, since the highly viscous microstructure of the con- tinuous phase was responsible for the high viscosity and elastic behavior of the emulsions, instead of the volumefraction of dispersed phase and droplet size. A rheological analysis, in which the cooperative flow theory, the soft glass rheology model, and the slip plane model were analyzed and compared, was performed to obtain one single model that could describe the non-Maxwellian behavior of both reverse phases and highly concentrated emulsions and to characterize their microstructure with the rheological properties.
Resumo:
The integration of ecological and evolutionary data is highly valuable for conservation planning. However, it has been rarely used in the marine realm, where the adequate design of marine protected areas (MPAs) is urgently needed. Here, we examined the interacting processes underlying the patterns of genetic structure and demographic strucuture of a highly vulnerable Mediterranean habitat-forming species (i.e. Paramuricea clavata (Risso, 1826)), with particular emphasis on the processes of contemporary dispersal, genetic drift, and colonization of a new population. Isolation by distance and genetic discontinuities were found, and three genetic clusters were detected; each submitted to variations in the relative impact of drift and gene flow. No founder effect was found in the new population. The interplay of ecology and evolution revealed that drift is strongly impacting the smallest, most isolated populations, where partial mortality of individuals was highest. Moreover, the eco-evolutionary analyses entailed important conservation implications for P. clavata. Our study supports the inclusion of habitat-forming organisms in the design of MPAs and highlights the need to account for genetic drift in the development of MPAs. Moreover, it reinforces the importance of integrating genetic and demographic data in marine conservation.
Resumo:
The mechanical properties of biological cells have long been considered as inherent markers of biological function and disease. However, the screening and active sorting of heterogeneous populations based on serial single-cell mechanical measurements has not been demonstrated. Here we present a novel monolithic glass chip for combined fluorescence detection and mechanical phenotyping using an optical stretcher. A new design and manufacturing process, involving the bonding of two asymmetrically etched glass plates, combines exact optical fiber alignment, low laser damage threshold and high imaging quality with the possibility of several microfluidic inlet and outlet channels. We show the utility of such a custombuilt optical stretcher glass chip by measuring and sorting single cells in a heterogeneous population based on their different mechanical properties and verify sorting accuracy by simultaneous fluorescence detection. This offers new possibilities of exact characterization and sorting of small populations based on rheological properties for biological and biomedical applications.