98 resultados para GENERALIZED 2ND LAW
Resumo:
[spa] Se presenta el operador de media ponderada ordenada generalizada lingüística de 2 tuplas inducida (2-TILGOWA). Es un nuevo operador de agregación que extiende los anteriores modelos a través de utilizar medias generalizadas, variables de ordenación inducidas e información lingüística representada mediante el modelo de las 2 tuplas lingüísticas. Su principal ventaja se encuentra en la posibilidad de incluir a un gran número de operadores de agregación lingüísticos como casos particulares. Por eso, el análisis puede ser visto desde diferentes perspectivas de forma que se obtiene una visión más completa del problema considerado y seleccionar la alternativa que parece estar en mayor concordancia con nuestros intereses o creencias. A continuación se desarrolla una generalización mayor a través de utilizar medias cuasi-aritméticas, obteniéndose el operador Quasi-2-TILOWA. El trabajo finaliza analizando la aplicabilidad del nuevo modelo en un problema de toma de decisiones sobre gestión de la producción.
Resumo:
[spa] El índice del máximo y el mínimo nivel es una técnica muy útil, especialmente para toma de decisiones, que usa la distancia de Hamming y el coeficiente de adecuación en el mismo problema. En este trabajo, se propone una generalización a través de utilizar medias generalizadas y cuasi aritméticas. A estos operadores de agregación, se les denominará el índice del máximo y el mínimo nivel medio ponderado ordenado generalizado (GOWAIMAM) y cuasi aritmético (Quasi-OWAIMAM). Estos nuevos operadores generalizan una amplia gama de casos particulares como el índice del máximo y el mínimo nivel generalizado (GIMAM), el OWAIMAM, y otros. También se desarrolla una aplicación en la toma de decisiones sobre selección de productos.
Resumo:
In this paper we analyze the time of ruin in a risk process with the interclaim times being Erlang(n) distributed and a constant dividend barrier. We obtain an integro-differential equation for the Laplace Transform of the time of ruin. Explicit solutions for the moments of the time of ruin are presented when the individual claim amounts have a distribution with rational Laplace transform. Finally, some numerical results and a compare son with the classical risk model, with interclaim times following an exponential distribution, are given.
Resumo:
[spa] Se presenta el operador OWA generalizado inducido (IGOWA). Es un nuevo operador de agregación que generaliza al operador OWA a través de utilizar las principales características de dos operadores muy conocidos como son el operador OWA generalizado y el operador OWA inducido. Entonces, este operador utiliza medias generalizadas y variables de ordenación inducidas en el proceso de reordenación. Con esta formulación, se obtiene una amplia gama de operadores de agregación que incluye a todos los casos particulares de los operadores IOWA y GOWA, y otros casos particulares. A continuación, se realiza una generalización mayor al operador IGOWA a través de utilizar medias cuasi-aritméticas. Finalmente, también se desarrolla un ejemplo numérico del nuevo modelo en un problema de toma de decisiones financieras.
Resumo:
[spa] Se presenta el operador de media ponderada ordenada generalizada lingüística de 2 tuplas inducida (2-TILGOWA). Es un nuevo operador de agregación que extiende los anteriores modelos a través de utilizar medias generalizadas, variables de ordenación inducidas e información lingüística representada mediante el modelo de las 2 tuplas lingüísticas. Su principal ventaja se encuentra en la posibilidad de incluir a un gran número de operadores de agregación lingüísticos como casos particulares. Por eso, el análisis puede ser visto desde diferentes perspectivas de forma que se obtiene una visión más completa del problema considerado y seleccionar la alternativa que parece estar en mayor concordancia con nuestros intereses o creencias. A continuación se desarrolla una generalización mayor a través de utilizar medias cuasi-aritméticas, obteniéndose el operador Quasi-2-TILOWA. El trabajo finaliza analizando la aplicabilidad del nuevo modelo en un problema de toma de decisiones sobre gestión de la producción.
Resumo:
[spa] El índice del máximo y el mínimo nivel es una técnica muy útil, especialmente para toma de decisiones, que usa la distancia de Hamming y el coeficiente de adecuación en el mismo problema. En este trabajo, se propone una generalización a través de utilizar medias generalizadas y cuasi aritméticas. A estos operadores de agregación, se les denominará el índice del máximo y el mínimo nivel medio ponderado ordenado generalizado (GOWAIMAM) y cuasi aritmético (Quasi-OWAIMAM). Estos nuevos operadores generalizan una amplia gama de casos particulares como el índice del máximo y el mínimo nivel generalizado (GIMAM), el OWAIMAM, y otros. También se desarrolla una aplicación en la toma de decisiones sobre selección de productos.
Resumo:
Positive-operator-valued measurements on a finite number of N identically prepared systems of arbitrary spin J are discussed. Pure states are characterized in terms of Bloch-like vectors restricted by a SU(2J+1) covariant constraint. This representation allows for a simple description of the equations to be fulfilled by optimal measurements. We explicitly find the minimal positive-operator-valued measurement for the N=2 case, a rigorous bound for N=3, and set up the analysis for arbitrary N.
Resumo:
We report on experiments aimed at comparing the hysteretic response of a Cu-Zn-Al single crystal undergoing a martensitic transition under strain-driven and stress-driven conditions. Strain-driven experiments were performed using a conventional tensile machine while a special device was designed to perform stress-driven experiments. Significant differences in the hysteresis loops were found. The strain-driven curves show reentrant behavior yield point which is not observed in the stress-driven case. The dissipated energy in the stress-driven curves is larger than in the strain-driven ones. Results from recently proposed models qualitatively agree with experiments.
Resumo:
The Newton-Hooke algebras in d dimensions are constructed as contractions of dS(AdS) algebras. Nonrelativistic brane actions are WZ terms of these Newton-Hooke algebras. The NH algebras appear also as subalgebras of multitemporal relativistic conformal algebras, SO(d+1,p+2). We construct generalizations of pp-wave metrics from these algebras.
Resumo:
Optimal and finite positive operator valued measurements on a finite number N of identically prepared systems have recently been presented. With physical realization in mind, we propose here optimal and minimal generalized quantum measurements for two-level systems. We explicitly construct them up to N = 7 and verify that they are minimal up to N = 5.
Resumo:
We prove for any pure three-quantum-bit state the existence of local bases which allow one to build a set of five orthogonal product states in terms of which the state can be written in a unique form. This leads to a canonical form which generalizes the two-quantum-bit Schmidt decomposition. It is uniquely characterized by the five entanglement parameters. It leads to a complete classification of the three-quantum-bit states. It shows that the right outcome of an adequate local measurement always erases all entanglement between the other two parties.
Resumo:
It was shown by Weyl that the general static axisymmetric solution of the vacuum Einstein equations in four dimensions is given in terms of a single axisymmetric solution of the Laplace equation in three-dimensional flat space. Weyls construction is generalized here to arbitrary dimension D>~4. The general solution of the D-dimensional vacuum Einstein equations that admits D-2 orthogonal commuting non-null Killing vector fields is given either in terms of D-3 independent axisymmetric solutions of Laplaces equation in three-dimensional flat space or by D-4 independent solutions of Laplaces equation in two-dimensional flat space. Explicit examples of new solutions are given. These include a five-dimensional asymptotically flat black ring with an event horizon of topology S1S2 held in equilibrium by a conical singularity in the form of a disk.
Resumo:
Onsager's symmetry theorem for transport near equilibrium is extended in two directions. A corresponding symmetry is obtained for linear transport near nonequilibrium stationary states, and the class of transport laws is extended to include nonlocality in both space and time. The results are formally exact and independent of any specific model for the nonequilibrium state.
Resumo:
We develop a general theory for percolation in directed random networks with arbitrary two-point correlations and bidirectional edgesthat is, edges pointing in both directions simultaneously. These two ingredients alter the previously known scenario and open new views and perspectives on percolation phenomena. Equations for the percolation threshold and the sizes of the giant components are derived in the most general case. We also present simulation results for a particular example of uncorrelated network with bidirectional edges confirming the theoretical predictions.