72 resultados para FOCK REPRESENTATIONS
Resumo:
To obtain a state-of-the-art benchmark potential energy surface (PES) for the archetypal oxidative addition of the methane C-H bond to the palladium atom, we have explored this PES using a hierarchical series of ab initio methods (Hartree-Fock, second-order Møller-Plesset perturbation theory, fourth-order Møller-Plesset perturbation theory with single, double and quadruple excitations, coupled cluster theory with single and double excitations (CCSD), and with triple excitations treated perturbatively [CCSD(T)]) and hybrid density functional theory using the B3LYP functional, in combination with a hierarchical series of ten Gaussian-type basis sets, up to g polarization. Relativistic effects are taken into account either through a relativistic effective core potential for palladium or through a full four-component all-electron approach. Counterpoise corrected relative energies of stationary points are converged to within 0.1-0.2 kcal/mol as a function of the basis-set size. Our best estimate of kinetic and thermodynamic parameters is -8.1 (-8.3) kcal/mol for the formation of the reactant complex, 5.8 (3.1) kcal/mol for the activation energy relative to the separate reactants, and 0.8 (-1.2) kcal/mol for the reaction energy (zero-point vibrational energy-corrected values in parentheses). This agrees well with available experimental data. Our work highlights the importance of sufficient higher angular momentum polarization functions, f and g, for correctly describing metal-d-electron correlation and, thus, for obtaining reliable relative energies. We show that standard basis sets, such as LANL2DZ+ 1f for palladium, are not sufficiently polarized for this purpose and lead to erroneous CCSD(T) results. B3LYP is associated with smaller basis set superposition errors and shows faster convergence with basis-set size but yields relative energies (in particular, a reaction barrier) that are ca. 3.5 kcal/mol higher than the corresponding CCSD(T) values
Resumo:
A comparative systematic study of the CrO2F2 compound has been performed using different conventional ab initio methodologies and density functional procedures. Two points have been analyzed: first, the accuracy of results yielded by each method under study, and second, the computational cost required to reach such results. Weighing up both aspects, density functional theory has been found to be more appropriate than the Hartree-Fock (HF) and the analyzed post-HF methods. Hence, the structural characterization and spectroscopic elucidation of the full CrO2X2 series (X=F,Cl,Br,I) has been done at this level of theory. Emphasis has been given to the unknown CrO2I2 species, and specially to the UV/visible spectra of all four compounds. Furthermore, a topological analysis in terms of charge density distributions has revealed why the valence shell electron pair repulsion model fails in predicting the molecular shape of such CrO2X2 complexes
Resumo:
In the present paper we discuss and compare two different energy decomposition schemes: Mayer's Hartree-Fock energy decomposition into diatomic and monoatomic contributions [Chem. Phys. Lett. 382, 265 (2003)], and the Ziegler-Rauk dissociation energy decomposition [Inorg. Chem. 18, 1558 (1979)]. The Ziegler-Rauk scheme is based on a separation of a molecule into fragments, while Mayer's scheme can be used in the cases where a fragmentation of the system in clearly separable parts is not possible. In the Mayer scheme, the density of a free atom is deformed to give the one-atom Mulliken density that subsequently interacts to give rise to the diatomic interaction energy. We give a detailed analysis of the diatomic energy contributions in the Mayer scheme and a close look onto the one-atom Mulliken densities. The Mulliken density ρA has a single large maximum around the nuclear position of the atom A, but exhibits slightly negative values in the vicinity of neighboring atoms. The main connecting point between both analysis schemes is the electrostatic energy. Both decomposition schemes utilize the same electrostatic energy expression, but differ in how fragment densities are defined. In the Mayer scheme, the electrostatic component originates from the interaction of the Mulliken densities, while in the Ziegler-Rauk scheme, the undisturbed fragment densities interact. The values of the electrostatic energy resulting from the two schemes differ significantly but typically have the same order of magnitude. Both methods are useful and complementary since Mayer's decomposition focuses on the energy of the finally formed molecule, whereas the Ziegler-Rauk scheme describes the bond formation starting from undeformed fragment densities
Resumo:
The present work provides a generalization of Mayer's energy decomposition for the density-functional theory (DFT) case. It is shown that one- and two-atom Hartree-Fock energy components in Mayer's approach can be represented as an action of a one-atom potential VA on a one-atom density ρ A or ρ B. To treat the exchange-correlation term in the DFT energy expression in a similar way, the exchange-correlation energy density per electron is expanded into a linear combination of basis functions. Calculations carried out for a number of density functionals demonstrate that the DFT and Hartree-Fock two-atom energies agree to a reasonable extent with each other. The two-atom energies for strong covalent bonds are within the range of typical bond dissociation energies and are therefore a convenient computational tool for assessment of individual bond strength in polyatomic molecules. For nonspecific nonbonding interactions, the two-atom energies are low. They can be either repulsive or slightly attractive, but the DFT results more frequently yield small attractive values compared to the Hartree-Fock case. The hydrogen bond in the water dimer is calculated to be between the strong covalent and nonbonding interactions on the energy scale
Resumo:
A conceptually new approach is introduced for the decomposition of the molecular energy calculated at the density functional theory level of theory into sum of one- and two-atomic energy components, and is realized in the "fuzzy atoms" framework. (Fuzzy atoms mean that the three-dimensional physical space is divided into atomic regions having no sharp boundaries but exhibiting a continuous transition from one to another.) The new scheme uses the new concept of "bond order density" to calculate the diatomic exchange energy components and gives them unexpectedly close to the values calculated by the exact (Hartree-Fock) exchange for the same Kohn-Sham orbitals
Resumo:
Collage is a pattern-based visual design authoring tool for the creation of collaborative learning scripts computationally modelled with IMS Learning Design (LD). The pattern-based visual approach aims to provide teachers with design ideas that are based on broadly accepted practices. Besides, it seeks hiding the LD notation so that teachers can easily create their own designs. The use of visual representations supports both the understanding of the design ideas and the usability of the authoring tool. This paper presents a multicase study comprising three different cases that evaluate the approach from different perspectives. The first case includes workshops where teachers use Collage. A second case implies the design of a scenario proposed by a third-party using related approaches. The third case analyzes a situation where students follow a design created with Collage. The cross-case analysis provides a global understanding of the possibilities and limitations of the pattern-based visual design approach.
Resumo:
This paper describes a Computer-Supported Collaborative Learning (CSCL) case study in engineering education carried out within the context of a network management course. The case study shows that the use of two computing tools developed by the authors and based on Free- and Open-Source Software (FOSS) provide significant educational benefits over traditional engineering pedagogical approaches in terms of both concepts and engineering competencies acquisition. First, the Collage authoring tool guides and supports the course teacher in the process of authoring computer-interpretable representations (using the IMS Learning Design standard notation) of effective collaborative pedagogical designs. Besides, the Gridcole system supports the enactment of that design by guiding the students throughout the prescribed sequence of learning activities. The paper introduces the goals and context of the case study, elaborates onhow Collage and Gridcole were employed, describes the applied evaluation methodology, anddiscusses the most significant findings derived from the case study.
Resumo:
Automatic classification of makams from symbolic data is a rarely studied topic. In this paper, first a review of an n-gram based approach is presented using various representations of the symbolic data. While a high degree of precision can be obtained, confusion happens mainly for makams using (almost) the same scale and pitch hierarchy but differ in overall melodic progression, seyir. To further improve the system, first n-gram based classification is tested for various sections of the piece to take into account a feature of the seyir that melodic progression starts in a certain region of the scale. In a second test, a hierarchical classification structure is designed which uses n-grams and seyir features in different levels to further improve the system.
Resumo:
Business organisations are excellent representations of what in physics and mathematics are designated "chaotic" systems. Because a culture of innovation will be vital for organisational survival in the 21st century, the present paper proposes that viewing organisations in terms of "complexity theory" may assist leaders in fine-tuning managerial philosophies that provide orderly management emphasizing stability within a culture of organised chaos, for it is on the "boundary of chaos" that the greatest creativity occurs. It is argued that 21st century companies, as chaotic social systems, will no longer be effectively managed by rigid objectives (MBO) nor by instructions (MBI). Their capacity for self-organisation will be derived essentially from how their members accept a shared set of values or principles for action (MBV). Complexity theory deals with systems that show complex structures in time or space, often hiding simple deterministic rules. This theory holds that once these rules are found, it is possible to make effective predictions and even to control the apparent complexity. The state of chaos that self-organises, thanks to the appearance of the "strange attractor", is the ideal basis for creativity and innovation in the company. In this self-organised state of chaos, members are not confined to narrow roles, and gradually develop their capacity for differentiation and relationships, growing continuously toward their maximum potential contribution to the efficiency of the organisation. In this way, values act as organisers or "attractors" of disorder, which in the theory of chaos are equations represented by unusually regular geometric configurations that predict the long-term behaviour of complex systems. In business organisations (as in all kinds of social systems) the starting principles end up as the final principles in the long term. An attractor is a model representation of the behavioral results of a system. The attractor is not a force of attraction or a goal-oriented presence in the system; it simply depicts where the system is headed based on its rules of motion. Thus, in a culture that cultivates or shares values of autonomy, responsibility, independence, innovation, creativity, and proaction, the risk of short-term chaos is mitigated by an overall long-term sense of direction. A more suitable approach to manage the internal and external complexities that organisations are currently confronting is to alter their dominant culture under the principles of MBV.
Resumo:
Business organisations are excellent representations of what in physics and mathematics are designated "chaotic" systems. Because a culture of innovation will be vital for organisational survival in the 21st century, the present paper proposes that viewing organisations in terms of "complexity theory" may assist leaders in fine-tuning managerial philosophies that provide orderly management emphasizing stability within a culture of organised chaos, for it is on the "boundary of chaos" that the greatest creativity occurs. It is argued that 21st century companies, as chaotic social systems, will no longer be effectively managed by rigid objectives (MBO) nor by instructions (MBI). Their capacity for self-organisation will be derived essentially from how their members accept a shared set of values or principles for action (MBV). Complexity theory deals with systems that show complex structures in time or space, often hiding simple deterministic rules. This theory holds that once these rules are found, it is possible to make effective predictions and even to control the apparent complexity. The state of chaos that self-organises, thanks to the appearance of the "strange attractor", is the ideal basis for creativity and innovation in the company. In this self-organised state of chaos, members are not confined to narrow roles, and gradually develop their capacity for differentiation and relationships, growing continuously toward their maximum potential contribution to the efficiency of the organisation. In this way, values act as organisers or "attractors" of disorder, which in the theory of chaos are equations represented by unusually regular geometric configurations that predict the long-term behaviour of complex systems. In business organisations (as in all kinds of social systems) the starting principles end up as the final principles in the long term. An attractor is a model representation of the behavioral results of a system. The attractor is not a force of attraction or a goal-oriented presence in the system; it simply depicts where the system is headed based on its rules of motion. Thus, in a culture that cultivates or shares values of autonomy, responsibility, independence, innovation, creativity, and proaction, the risk of short-term chaos is mitigated by an overall long-term sense of direction. A more suitable approach to manage the internal and external complexities that organisations are currently confronting is to alter their dominant culture under the principles of MBV.
Resumo:
The well-known lack of power of unit root tests has often been attributed to the shortlength of macroeconomic variables and also to DGP s that depart from the I(1)-I(0)alternatives. This paper shows that by using long spans of annual real GNP and GNPper capita (133 years) high power can be achieved, leading to the rejection of both theunit root and the trend-stationary hypothesis. This suggests that possibly neither modelprovides a good characterization of these data. Next, more flexible representations areconsidered, namely, processes containing structural breaks (SB) and fractional ordersof integration (FI). Economic justification for the presence of these features in GNP isprovided. It is shown that the latter models (FI and SB) are in general preferred to theARIMA (I(1) or I(0)) ones. As a novelty in this literature, new techniques are appliedto discriminate between FI and SB models. It turns out that the FI specification ispreferred, implying that GNP and GNP per capita are non-stationary, highly persistentbut mean-reverting series. Finally, it is shown that the results are robust when breaksin the deterministic component are allowed for in the FI model. Some macroeconomicimplications of these findings are also discussed.
Resumo:
In this article we study the behavior of inertia groups for modularGalois mod l^n representations and in some cases we give a generalizationof Ribet s lowering the level result (cf. [Rib90]).
Resumo:
In this paper we explore the mechanisms that allow securities analysts to value companies in contexts of Knightian uncertainty, that is, in the face of information that is unclear, subject to unforeseeable contingencies or to multiple interpretations. We address this question with a grounded-theory analysis of the reports written on Amazon.com by securities analyst Henry Blodget and rival analysts during the years 1998-2000. Our core finding is that analysts' reports are structured by internally consistent associations that includecategorizations, key metrics and analogies. We refer to these representations as calculative frames, and propose that analysts function as frame-makers - that is, asspecialized intermediaries that help investors value uncertain stocks. We conclude by considering the implications of frame-making for the rise of new industry categories, analysts' accuracy, and the regulatory debate on analysts'independence.
Resumo:
The main information sources to study a particular piece of music are symbolic scores and audio recordings. These are complementary representations of the piece and it isvery useful to have a proper linking between the two of the musically meaningful events. For the case of makam music of Turkey, linking the available scores with the correspondingaudio recordings requires taking the specificities of this music into account, such as the particular tunings, the extensive usage of non-notated expressive elements, and the way in which the performer repeats fragmentsof the score. Moreover, for most of the pieces of the classical repertoire, there is no score written by the original composer. In this paper, we propose a methodology to pair sections of a score to the corresponding fragments of audio recording performances. The pitch information obtained from both sources is used as the common representationto be paired. From an audio recording, fundamental frequency estimation and tuning analysis is done to compute a pitch contour. From the corresponding score, symbolic note names and durations are converted to a syntheticpitch contour. Then, a linking operation is performed between these pitch contours in order to find the best correspondences.The method is tested on a dataset of 11 compositions spanning 44 audio recordings, which are mostly monophonic. An F3-score of 82% and 89% are obtained with automatic and semi-automatic karar detection respectively,showing that the methodology may give us a needed tool for further computational tasks such as form analysis, audio-score alignment and makam recognition.
Resumo:
Los mapas de riesgo de inundaciones deberían mostrar las inundaciones en relación con los impactos potenciales que éstas pueden llegar a producir en personas, bienes y actividades. Por ello, es preciso añadir el concepto de vulnerabilidad al mero estudio del fenómeno físico. Así pues, los mapas de riesgo de daños por inundación son los verdaderos mapas de riesgo, ya que se elaboran, por una parte, a partir de cartografía que localiza y caracteriza el fenómeno físico de las inundaciones, y, por la otra, a partir de cartografía que localiza y caracteriza los elementos expuestos. El uso de las llamadas «nuevas tecnologías», como los SIG, la percepción remota, los sensores hidrológicos o Internet, representa un potencial de gran valor para el desarrollo de los mapas de riesgo de inundaciones, que es, hoy por hoy, un campo abierto a la investigación