55 resultados para Exponential distributions
Resumo:
Monte Carlo simulations were used to generate data for ABAB designs of different lengths. The points of change in phase are randomly determined before gathering behaviour measurements, which allows the use of a randomization test as an analytic technique. Data simulation and analysis can be based either on data-division-specific or on common distributions. Following one method or another affects the results obtained after the randomization test has been applied. Therefore, the goal of the study was to examine these effects in more detail. The discrepancies in these approaches are obvious when data with zero treatment effect are considered and such approaches have implications for statistical power studies. Data-division-specific distributions provide more detailed information about the performance of the statistical technique.
Resumo:
One of the most important problems in optical pattern recognition by correlation is the appearance of sidelobes in the correlation plane, which causes false alarms. We present a method that eliminate sidelobes of up to a given height if certain conditions are satisfied. The method can be applied to any generalized synthetic discriminant function filter and is capable of rejecting lateral peaks that are even higher than the central correlation. Satisfactory results were obtained in both computer simulations and optical implementation.
Resumo:
Many European states apply score systems to evaluate the disability severity of non-fatal motor victims under the law of third-party liability. The score is a non-negative integer with an upper bound at 100 that increases with severity. It may be automatically converted into financial terms and thus also reflects the compensation cost for disability. In this paper, discrete regression models are applied to analyze the factors that influence the disability severity score of victims. Standard and zero-altered regression models are compared from two perspectives: an interpretation of the data generating process and the level of statistical fit. The results have implications for traffic safety policy decisions aimed at reducing accident severity. An application using data from Spain is provided.
Resumo:
This study examined the independent effect of skewness and kurtosis on the robustness of the linear mixed model (LMM), with the Kenward-Roger (KR) procedure, when group distributions are different, sample sizes are small, and sphericity cannot be assumed. Methods: A Monte Carlo simulation study considering a split-plot design involving three groups and four repeated measures was performed. Results: The results showed that when group distributions are different, the effect of skewness on KR robustness is greater than that of kurtosis for the corresponding values. Furthermore, the pairings of skewness and kurtosis with group size were found to be relevant variables when applying this procedure. Conclusions: With sample sizes of 45 and 60, KR is a suitable option for analyzing data when the distributions are: (a) mesokurtic and not highly or extremely skewed, and (b) symmetric with different degrees of kurtosis. With total sample sizes of 30, it is adequate when group sizes are equal and the distributions are: (a) mesokurtic and slightly or moderately skewed, and sphericity is assumed; and (b) symmetric with a moderate or high/extreme violation of kurtosis. Alternative analyses should be considered when the distributions are highly or extremely skewed and samples sizes are small.
Resumo:
A method to evaluate the physical realizability of an arbitrary three-dimensional vectorial field distribution in the focal area is proposed. A parameter that measures the similarity between the designed (target) field and the physically achievable beam is provided. This analysis is carried out within the framework of the closest electromagnetic field to a given vectorial function, and the procedure is applied to two illustrative cases.
Resumo:
The most suitable method for estimation of size diversity is investigated. Size diversity is computed on the basis of the Shannon diversity expression adapted for continuous variables, such as size. It takes the form of an integral involving the probability density function (pdf) of the size of the individuals. Different approaches for the estimation of pdf are compared: parametric methods, assuming that data come from a determinate family of pdfs, and nonparametric methods, where pdf is estimated using some kind of local evaluation. Exponential, generalized Pareto, normal, and log-normal distributions have been used to generate simulated samples using estimated parameters from real samples. Nonparametric methods include discrete computation of data histograms based on size intervals and continuous kernel estimation of pdf. Kernel approach gives accurate estimation of size diversity, whilst parametric methods are only useful when the reference distribution have similar shape to the real one. Special attention is given for data standardization. The division of data by the sample geometric mean is proposedas the most suitable standardization method, which shows additional advantages: the same size diversity value is obtained when using original size or log-transformed data, and size measurements with different dimensionality (longitudes, areas, volumes or biomasses) may be immediately compared with the simple addition of ln k where kis the dimensionality (1, 2, or 3, respectively). Thus, the kernel estimation, after data standardization by division of sample geometric mean, arises as the most reliable and generalizable method of size diversity evaluation
Resumo:
Regional differences in real wages have been shown to be both large and persistent in the U.S. and the U.K., as well as in the economies of other countries. Empirical evidence suggests that wage differentials adjusted for the cost of living cannot only be explained by the unequal spatial distribution of characteristics determining earnings. Rather, average wage gap decomposition reveals the important contribution made by regional heterogeneity in the price assigned to these characteristics. This paper proposes a method for assessing regional disparities in the entire wage distribution and for decomposing the effect of differences across regions in the endowments and prices of the characteristics. The hypothesis forwarded is that the results from previous studies obtained by comparing average regional wages may be partial and nonrobust. Empirical evidence from a matched employer-employee dataset for Spain confirms marked differences in wage distributions between regions, which do not result from worker and firm characteristics but from the increasing role of regional differences in the return to human capital.
Resumo:
This article carries out an empirical examination of the origin of the differences between immigrant and native-born wage structures in the Spanish labour market. Especial attention is given in the analysis to the role played by occupational and workplace segregation of immigrants. Legal immigrants from developing countries exhibit lower mean wages and a more compressed wage structure than native-born workers. By contrast, immigrants from developed countries display higher mean wages and a more dispersed wage structure. The main empirical finding is that the disparities in the wage distributions for the native-born and both groups of immigrants are largely explained by their different observed characteristics, with a particularly important influence in this context of workplace and, particularly, occupational segregation.
Resumo:
We generalize to arbitrary waiting-time distributions some results which were previously derived for discrete distributions. We show that for any two waiting-time distributions with the same mean delay time, that with higher dispersion will lead to a faster front. Experimental data on the speed of virus infections in a plaque are correctly explained by the theoretical predictions using a Gaussian delay-time distribution, which is more realistic for this system than the Dirac delta distribution considered previously [J. Fort and V. Méndez, Phys. Rev. Lett.89, 178101 (2002)]
Resumo:
The speed of traveling fronts for a two-dimensional model of a delayed reactiondispersal process is derived analytically and from simulations of molecular dynamics. We show that the one-dimensional (1D) and two-dimensional (2D) versions of a given kernel do not yield always the same speed. It is also shown that the speeds of time-delayed fronts may be higher than those predicted by the corresponding non-delayed models. This result is shown for systems with peaked dispersal kernels which lead to ballistic transport