125 resultados para Equivalence Problem
Resumo:
We obtain minimax lower bounds on the regret for the classicaltwo--armed bandit problem. We provide a finite--sample minimax version of the well--known log $n$ asymptotic lower bound of Lai and Robbins. Also, in contrast to the log $n$ asymptotic results on the regret, we show that the minimax regret is achieved by mere random guessing under fairly mild conditions on the set of allowable configurations of the two arms. That is, we show that for {\sl every} allocation rule and for {\sl every} $n$, there is a configuration such that the regret at time $n$ is at least 1 -- $\epsilon$ times the regret of random guessing, where $\epsilon$ is any small positive constant.
Resumo:
The problems arising in the logistics of commercial distribution are complexand involve several players and decision levels. One important decision isrelated with the design of the routes to distribute the products, in anefficient and inexpensive way.This article explores three different distribution strategies: the firststrategy corresponds to the classical vehicle routing problem; the second isa master route strategy with daily adaptations and the third is a strategythat takes into account the cross-functional planning through amulti-objective model with two objectives. All strategies are analyzed ina multi-period scenario. A metaheuristic based on the Iteratetd Local Search,is used to solve the models related with each strategy. A computationalexperiment is performed to evaluate the three strategies with respect to thetwo objectives. The cross functional planning strategy leads to solutions thatput in practice the coordination between functional areas and better meetbusiness objectives.
Resumo:
Alfréd Rényi, in a paper of 1962, A new approach to the theory ofEngel's series, proposed a problem related to the growth of theelements of an Engel's series. In this paper, we reformulate andsolve Rényi's problem for both, Engel's series and Pierceexpansions.
Resumo:
Equivalence classes of normal form games are defined using the geometryof correspondences of standard equilibiurm concepts like correlated, Nash,and robust equilibrium or risk dominance and rationalizability. Resultingequivalence classes are fully characterized and compared across differentequilibrium concepts for 2 x 2 games. It is argued that the procedure canlead to broad and game-theoretically meaningful distinctions of games aswell as to alternative ways of viewing and testing equilibrium concepts.Larger games are also briefly considered.
Resumo:
In this paper a p--median--like model is formulated to address theissue of locating new facilities when there is uncertainty. Severalpossible future scenarios with respect to demand and/or the travel times/distanceparameters are presented. The planner will want a strategy of positioning thatwill do as ``well as possible'' over the future scenarios. This paper presents a discrete location model formulation to address this P--Medianproblem under uncertainty. The model is applied to the location of firestations in Barcelona.
Resumo:
Previous covering models for emergency service consider all the calls to be of the sameimportance and impose the same waiting time constraints independently of the service's priority.This type of constraint is clearly inappropriate in many contexts. For example, in urban medicalemergency services, calls that involve danger to human life deserve higher priority over calls formore routine incidents. A realistic model in such a context should allow prioritizing the calls forservice.In this paper a covering model which considers different priority levels is formulated andsolved. The model heritages its formulation from previous research on Maximum CoverageModels and incorporates results from Queuing Theory, in particular Priority Queuing. Theadditional complexity incorporated in the model justifies the use of a heuristic procedure.
Resumo:
The Generalized Assignment Problem consists in assigning a setof tasks to a set of agents with minimum cost. Each agent hasa limited amount of a single resource and each task must beassigned to one and only one agent, requiring a certain amountof the resource of the agent. We present new metaheuristics forthe generalized assignment problem based on hybrid approaches.One metaheuristic is a MAX-MIN Ant System (MMAS), an improvedversion of the Ant System, which was recently proposed byStutzle and Hoos to combinatorial optimization problems, and itcan be seen has an adaptive sampling algorithm that takes inconsideration the experience gathered in earlier iterations ofthe algorithm. Moreover, the latter heuristic is combined withlocal search and tabu search heuristics to improve the search.A greedy randomized adaptive search heuristic (GRASP) is alsoproposed. Several neighborhoods are studied, including one basedon ejection chains that produces good moves withoutincreasing the computational effort. We present computationalresults of the comparative performance, followed by concludingremarks and ideas on future research in generalized assignmentrelated problems.
Resumo:
The Drivers Scheduling Problem (DSP) consists of selecting a set of duties for vehicle drivers, for example buses, trains, plane or boat drivers or pilots, for the transportation of passengers or goods. This is a complex problem because it involves several constraints related to labour and company rules and can also present different evaluation criteria and objectives. Being able to develop an adequate model for this problem that can represent the real problem as close as possible is an important research area.The main objective of this research work is to present new mathematical models to the DSP problem that represent all the complexity of the drivers scheduling problem, and also demonstrate that the solutions of these models can be easily implemented in real situations. This issue has been recognized by several authors and as important problem in Public Transportation. The most well-known and general formulation for the DSP is a Set Partition/Set Covering Model (SPP/SCP). However, to a large extend these models simplify some of the specific business aspects and issues of real problems. This makes it difficult to use these models as automatic planning systems because the schedules obtained must be modified manually to be implemented in real situations. Based on extensive passenger transportation experience in bus companies in Portugal, we propose new alternative models to formulate the DSP problem. These models are also based on Set Partitioning/Covering Models; however, they take into account the bus operator issues and the perspective opinions and environment of the user.We follow the steps of the Operations Research Methodology which consist of: Identify the Problem; Understand the System; Formulate a Mathematical Model; Verify the Model; Select the Best Alternative; Present the Results of theAnalysis and Implement and Evaluate. All the processes are done with close participation and involvement of the final users from different transportation companies. The planner s opinion and main criticisms are used to improve the proposed model in a continuous enrichment process. The final objective is to have a model that can be incorporated into an information system to be used as an automatic tool to produce driver schedules. Therefore, the criteria for evaluating the models is the capacity to generate real and useful schedules that can be implemented without many manual adjustments or modifications. We have considered the following as measures of the quality of the model: simplicity, solution quality and applicability. We tested the alternative models with a set of real data obtained from several different transportation companies and analyzed the optimal schedules obtained with respect to the applicability of the solution to the real situation. To do this, the schedules were analyzed by the planners to determine their quality and applicability. The main result of this work is the proposition of new mathematical models for the DSP that better represent the realities of the passenger transportation operators and lead to better schedules that can be implemented directly in real situations.
Resumo:
We consider two fundamental properties in the analysis of two-way tables of positive data: the principle of distributional equivalence, one of the cornerstones of correspondence analysis of contingency tables, and the principle of subcompositional coherence, which forms the basis of compositional data analysis. For an analysis to be subcompositionally coherent, it suffices to analyse the ratios of the data values. The usual approach to dimension reduction in compositional data analysis is to perform principal component analysis on the logarithms of ratios, but this method does not obey the principle of distributional equivalence. We show that by introducing weights for the rows and columns, the method achieves this desirable property. This weighted log-ratio analysis is theoretically equivalent to spectral mapping , a multivariate method developed almost 30 years ago for displaying ratio-scale data from biological activity spectra. The close relationship between spectral mapping and correspondence analysis is also explained, as well as their connection with association modelling. The weighted log-ratio methodology is applied here to frequency data in linguistics and to chemical compositional data in archaeology.