64 resultados para Energetic equivalency
Resumo:
This paper addresses the surprising lack of quality control on the analysis and selection on energy policies observable in the last decades. As an example, we discuss the delusional idea that it is possible to replace fossil energy with large scale ethanol production from agricultural crops. But if large scale ethanol production is not practical in energetic terms, why huge amount of money has been invested in it and is it still being invested? In order to answer this question we introduce two concepts useful to frame, in general terms, the predicament of quality control in science: (i) the concept of “granfalloons” proposed by K. Vonnegut (1963) flagging the danger of the formation of “crusades to save the world” void of real meaning. These granfalloons are often used by powerful lobbies to distort policy decisions; and (ii) the concept of Post-Normal science by S. Funtowicz and J. Ravetz (1990) indicating a standard predicament faced by science when producing information for governance. When mixing together uncertainty, multiple-scale and legitimate but contrasting views it becomes impossible to deal with complex issue using the conventional scientific approach based on reductionism. We finally discuss the implications of a different approach to the assessment of alternative energy sources by introducing the concept of Promethean technology.
Resumo:
Este artículo, presenta una propuesta de ecoetiqueta que evalúa la calidad de los espacios de interés natural. Debido a la inexistencia de una ecoetiqueta de servicios de estas características, se han estudiado antecedentes de certificados ecológicos de servicios y sistemas de evaluación de espacios naturales y urbanos. A partir de este estudio, se han evaluado 110 indicadores preexistentes, de los cuales se han adaptado 59 indicadores, 29 de cumplimiento obligatorio y 30 recomendables, divididos en tres flujos: Flujo Humano, Flujo Natural y Flujo de Gestión, y 17 vectores; con los cuales se ha elaborado un sistema de evaluación adaptado a esta ecoetiqueta. Con la determinación del reglamento y las condiciones generales para la concesión de la propuesta de ecoetiqueta, se ha realizado una Prueba Piloto en la Vall d’Alinyà (Provincia de Lérida) centrada en el Flujo Humano, verificando de forma positiva la aplicación de la certificación en este espacio. Los resultados indican una adecuación de más del 90% de los indicadores seleccionados, mientras que se ha observado, principalmente, deficiencias en los sistemas hídricos y energéticos de la Vall d’Alinyà. Por ello, se han elaborado una serie de propuestas de mejora.
Resumo:
The finding that tissue δ15N values increase with protein catabolism has led researchers to apply this value to gauge nutritive condition in vertebrates. However, its application to marine mammals has in most occasions failed. We investigated the relationship between δ15N values and the fattening/fasting cycle in a model species, the fin whale, a migratory capital breeder that experiences severe seasonal variation in body condition. We analyzed two tissues providing complementary insights: one with isotopic turnover (muscle) and one that keeps a permanent record of variations in isotopic values (baleen plates). In both tissues δ15N values increased with intensive feeding but decreased with fasting, thus contradicting the pattern previously anticipated. The apparent inconsistency during fasting is explained by the fact that a) individuals migrate between different isotopic isoscapes, b) starvation may not trigger significant negative nitrogen balance, and c) excretion drops and elimination of 15N-depleted urine is minimized. Conversely, when intensive feeding is resumed in the northern grounds, protein anabolism and excretion start again, triggering 15N enrichment. It can be concluded that in whales and other mammals that accrue massive depots of lipids as energetic reserves and which have limited access to drinking water, the δ15N value is not affected by fasting and therefore cannot be used as an indicatior of nutritive condition.
Resumo:
Background: The reduction in the amount of food available for European avian scavengers as a consequence of restrictive public health policies is a concern for managers and conservationists. Since 2002, the application of several sanitary regulations has limited the availability of feeding resources provided by domestic carcasses, but theoretical studies assessing whether the availability of food resources provided by wild ungulates are enough to cover energetic requirements are lacking. Methodology/Findings: We assessed food provided by a wild ungulate population in two areas of NE Spain inhabited by three vulture species and developed a P System computational model to assess the effects of the carrion resources provided on their population dynamics. We compared the real population trend with to a hypothetical scenario in which only food provided by wild ungulates was available. Simulation testing of the model suggests that wild ungulates constitute an important food resource in the Pyrenees and the vulture population inhabiting this area could grow if only the food provided by wild ungulates would be available. On the contrary, in the Pre-Pyrenees there is insufficient food to cover the energy requirements of avian scavenger guilds, declining sharply if biomass from domestic animals would not be available. Conclusions/Significance: Our results suggest that public health legislation can modify scavenger population trends if a large number of domestic ungulate carcasses disappear from the mountains. In this case, food provided by wild ungulates could be not enough and supplementary feeding could be necessary if other alternative food resources are not available (i.e. the reintroduction of wild ungulates), preferably in European Mediterranean scenarios sharing similar and socio-economic conditions where there are low densities of wild ungulates. Managers should anticipate the conservation actions required by assessing food availability and the possible scenarios in order to make the most suitable decisions.
Resumo:
SEPServer is a three-year collaborative project funded by the seventh framework programme (FP7-SPACE) of the European Union. The objective of the project is to provide access to state-of-the-art observations and analysis tools for the scientific community on solar energetic particle (SEP) events and related electromagnetic (EM) emissions. The project will eventually lead to better understanding of the particle acceleration and transport processes at the Sun and in the inner heliosphere. These processes lead to SEP events that form one of the key elements of space weather. In this paper we present the first results from the systematic analysis work performed on the following datasets: SOHO/ERNE, SOHO/EPHIN, ACE/EPAM, Wind/WAVES and GOES X-rays. A catalogue of SEP events at 1 AU, with complete coverage over solar cycle 23, based on high-energy (~68-MeV) protons from SOHO/ERNE and electron recordings of the events by SOHO/EPHIN and ACE/EPAM are presented. A total of 115 energetic particle events have been identified and analysed using velocity dispersion analysis (VDA) for protons and time-shifting analysis (TSA) for electrons and protons in order to infer the SEP release times at the Sun. EM observations during the times of the SEP event onset have been gathered and compared to the release time estimates of particles. Data from those events that occurred during the European day-time, i.e., those that also have observations from ground-based observatories included in SEPServer, are listed and a preliminary analysis of their associations is presented. We find that VDA results for protons can be a useful tool for the analysis of proton release times, but if the derived proton path length is out of a range of 1 AU < s[3 AU, the result of the analysis may be compromised, as indicated by the anti-correlation of the derived path length and release time delay from the asso ciated X-ray flare. The average path length derived from VDA is about 1.9 times the nominal length of the spiral magnetic field line. This implies that the path length of first-arriving MeV to deka-MeV protons is affected by interplanetary scattering. TSA of near-relativistic electrons results in a release time that shows significant scatter with respect to the EM emissions but with a trend of being delayed more with increasing distance between the flare and the nominal footpoint of the Earth-connected field line.
Resumo:
We use interplanetary transport simulations to compute a database of electron Green's functions, i.e., differential intensities resulting at the spacecraft position from an impulsive injection of energetic (>20 keV) electrons close to the Sun, for a large number of values of two standard interplanetary transport parameters: the scattering mean free path and the solar wind speed. The nominal energy channels of the ACE, STEREO, and Wind spacecraft have been used in the interplanetary transport simulations to conceive a unique tool for the study of near-relativistic electron events observed at 1 AU. In this paper, we quantify the characteristic times of the Green's functions (onset and peak time, rise and decay phase duration) as a function of the interplanetary transport conditions. We use the database to calculate the FWHM of the pitch-angle distributions at different times of the event and under different scattering conditions. This allows us to provide a first quantitative result that can be compared with observations, and to assess the validity of the frequently used term beam-like pitch-angle distribution.
Resumo:
The expansion of an isolated hot spherical nucleus with excitation energy and its caloric curve are studied in a thermodynamic model with the SkM∗ force as the nuclear effective two-body inter-action. The calculated results are shown to compare well with the recent experimental data from energetic nuclear collisions. The fluctuations in temperature and density are also studied. They are seen to build up very rapidly beyond an excitation energy of ∼9 MeV/u. Volume-conserving quadrupole deformation in addition to expansion indicates , however, nuclear disassembly above an excitation energy of ∼4 MeV/u.
Resumo:
Microquasars are stellar x-ray binaries that behave as a scaled down version of extragalactic quasars. The star LS 5039 is a new microquasar system with apparent persistent ejection of relativistic plasma at a 3 kiloparsec distance from the sun. It may also be associated with a gamma-ray source discovered by the Energetic Gamma Ray Experiment Telescope (EGRET) on board the COMPTON-Gamma Ray Observatory satellite. Before the discovery of LS 5039, merely a handful of microquasars had been identified in the Galaxy, and none of them was detected in high-energy gamma-rays.
Resumo:
The finding that tissue δ15N values increase with protein catabolism has led researchers to apply this value to gauge nutritive condition in vertebrates. However, its application to marine mammals has in most occasions failed. We investigated the relationship between δ15N values and the fattening/fasting cycle in a model species, the fin whale, a migratory capital breeder that experiences severe seasonal variation in body condition. We analyzed two tissues providing complementary insights: one with isotopic turnover (muscle) and one that keeps a permanent record of variations in isotopic values (baleen plates). In both tissues δ15N values increased with intensive feeding but decreased with fasting, thus contradicting the pattern previously anticipated. The apparent inconsistency during fasting is explained by the fact that a) individuals migrate between different isotopic isoscapes, b) starvation may not trigger significant negative nitrogen balance, and c) excretion drops and elimination of 15N-depleted urine is minimized. Conversely, when intensive feeding is resumed in the northern grounds, protein anabolism and excretion start again, triggering 15N enrichment. It can be concluded that in whales and other mammals that accrue massive depots of lipids as energetic reserves and which have limited access to drinking water, the δ15N value is not affected by fasting and therefore cannot be used as an indicatior of nutritive condition.
Resumo:
This study analyzes the capillarity and fibre-type distribution of six locomotory muscles of gulls. The morphological basis and the oxygen supply characteristics of the skeletal muscle of a species with a marked pattern of gliding flight are established, thus contributing to a better understanding of the physiology of a kind of flight with low energetic requirements. The four wing muscles studied (scapulotriceps, pectoralis, scapulohumeralis, and extensor metacarpi) exhibited higher percentages of fast oxidative glycolytic fibres (>70%) and lower percentages of slow oxidative fibres (<16%) than the muscles involved in nonflight locomotion (gastrocnemius and iliotibialis). Capillary densities ranged from 816 to 1,233 capillaries mm(-2), having the highest value in the pectoralis. In this muscle, the fast oxidative glycolytic fibres had moderate staining for succinate dehydrogenase and relatively large fibre sizes, as deduced from the low fibre densities (589-665 fibres mm(-2)). All these findings are seen as an adaptive response for gliding, when the wing is held outstretched by isometric contractions. The leg muscles studied included a considerable population of slow oxidative fibres (>14% in many regions), which suggests that they are adapted to postural activities. Regional variations in the relative distributions of fibre types in muscle gastrocnemius may reflect different functional demands placed on this muscle during terrestrial and aquatic locomotion. The predominance of oxidative fibres and capillary densities under 1,000 capillaries mm(-2) in leg muscles is probably a consequence of an adaptation for slow swimming and maintenance of the posture on land rather than for other locomotory capabilities, such as endurance or sprint activities.
Resumo:
The presence of Dactyloidites ottoi is first recorded in the Eocene Sant Llorenç del Munt fan-delta complex. This constitutes the first citation for the Paleogene. The ichnospecies occurs in the lower part of a prograding fan-delta front sequence, associated to other traces produced by sediment-feeders. This association is substituted in the upper part of the sequence by abundant vertical Ophiomorpha indicating an increase of energetic conditions. The paleoenvironmental setting interpreted for Dactyloidites is consistent with that of previous described occurrences.
Resumo:
Commission 49 covers research on the solar wind, shocks and particle acceleration, both transient and steady-state, e.g., corotating, structures within the heliosphere, and the termination shock and boundary of the heliosphere. The present triennal report is particularly rich in important results and events. The crossing of the solar wind termination shock by Voyager 2 in 2007 is a highlight and a milestone that will certainly have important consequences for astrophysical processes in general (Section 7). The fiftieth anniversary of the International Geophysical Year (19571958), which is also the fiftieth anniversary of the birth of the Space Age, was marked not only by celebrations and a strong Education and Public Outreach Program, but also by efforts in coordinating present observations and in starting new scientific programs, particularly implying developing countries (Section 8). Studies of solar energetic particles (Section 3) and the related radio bursts (Section 4) benefited from new data from a number of spacecraft. The STEREO mission was launched in October 2006 and has obtained new results on 3-D aspects of the inner heliosphere. Meanwhile, solar cycle 24 is expected to become active soon, following what is already the deepest solar minimum of the space age...
Resumo:
The effect of the local environment on the energetic strain within small (SiO)N rings (with N=2,3) in silica materials is investigated via periodic model systems employing density functional calculations. Through comparison of the energies of various nonterminated systems containing small rings in strained and relatively unstrained environments, with alpha quartz, we demonstrate how small ring strain is affected by the nature of the embedding environment. We compare our findings with numerous previously reported calculations, often predicting significantly different small-ring strain energies, leading to a critical assessment of methods of calculating accurate localized ring energies. The results have relevance for estimates of the strain-induced response (e.g., chemical, photo, and radio) of small silica rings, and the propensity for them to form in bulk glasses, thin films, and nanoclusters.
Resumo:
For two important metal oxides (MO, M=Mg, Zn) we predict, via accurate electronic structure calculations, that new low-density nanoporous crystalline phases may be accessible via the coalescence of nanocluster building blocks. Specifically, we consider the assembly of cagelike (MO)12 clusters exhibiting particularly high gas phase stability, leading to new polymorphs with energetic stabilities rivaling (and sometimes higher) than those of known MO polymorphs.
Resumo:
Experimentally, Ce2O3 films are used to study cerium oxide in its fully or partially reduced state, as present in many applications. We have explored the space of low energy Ce2O3 nanofilms using structure prediction and density functional calculations, yielding more than 30 distinct nanofilm structures. First, our results help to rationalize the roles of thermodynamics and kinetics in the preparation of reduced ceria nanofilms with different bulk crystalline structures (e.g. A-type or bixbyite) depending on the support used. Second, we predict a novel, as yet experimentally unresolved, nanofilm which has a structure that does not correspond to any previously reported bulk A2B3 phase and which has an energetic stability between that of A-type and bixbyite. To assist identification and fabrication of this new Ce2O3 nanofilm we calculate some observable properties and propose supports for its epitaxial growth.