86 resultados para EVOLUTIONARY PATTERN


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Adenoviruses of primates include human (HAdV) and simian (SAdV) isolates classified into 8 species (Human Adenovirus A to G, and Simian Adenovirus A). In this study, a novel adenovirus was isolated from a colony of cynomolgus macaques (Macaca fascicularis) and subcultured in VERO cells. Its complete genome was purified and a region encompassing the hexon gene, the protease gene, the DNA binding protein (DBP) and the 100 kDa protein was amplified by PCR and sequenced by primer walking. Sequence analysis of these four genes showed that the new isolate had 80% identity to other primate adenoviruses and lacked recombination events. The study of the evolutionary relationships of this new monkey AdV based on the combined sequences of the four genes supported a close relationship to SAdV-3 and SAdV-6, lineages isolated from Rhesus monkeys. The clade formed by these three types is separated from the remaining clades and establishes a novel branch that is related to species HAdV-A, F and G. However, the genetic distance corresponding to the newly isolated monkey AdV considerably differs from these as to belong to a new, not yet established species. Results presented here widen our knowledge on SAdV and represents an important contribution to the understanding of the evolutionary history of primate adenoviruses.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: To compare the characteristics and prognostic features of ischemic stroke in patients with diabetes and without diabetes, and to determine the independent predictors of in-hospital mortality in people with diabetes and ischemic stroke.Methods: Diabetes was diagnosed in 393 (21.3%) of 1,840 consecutive patients with cerebral infarction included in a prospective stroke registry over a 12-year period. Demographic characteristics, cardiovascular risk factors, clinical events, stroke subtypes, neuroimaging data, and outcome in ischemic stroke patients with and without diabetes were compared. Predictors of in-hospital mortality in diabetic patients with ischemic stroke were assessed by multivariate analysis. Results: People with diabetes compared to people without diabetes presented more frequently atherothrombotic stroke (41.2% vs 27%) and lacunar infarction (35.1% vs 23.9%) (P < 0.01). The in-hospital mortality in ischemic stroke patients with diabetes was 12.5% and 14.6% in those without (P = NS). Ischemic heart disease, hyperlipidemia, subacute onset, 85 years old or more, atherothrombotic and lacunar infarcts, and thalamic topography were independently associated with ischemic stroke in patients with diabetes, whereas predictors of in-hospital mortality included the patient's age, decreased consciousness, chronic nephropathy, congestive heart failure and atrial fibrillation. Conclusion: Ischemic stroke in people with diabetes showed a different clinical pattern from those without diabetes, with atherothrombotic stroke and lacunar infarcts being more frequent. Clinical factors indicative of the severity of ischemic stroke available at onset have a predominant influence upon in-hospital mortality and may help clinicians to assess prognosis more accurately.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Adenoviruses of primates include human (HAdV) and simian (SAdV) isolates classified into 8 species (Human Adenovirus A to G, and Simian Adenovirus A). In this study, a novel adenovirus was isolated from a colony of cynomolgus macaques (Macaca fascicularis) and subcultured in VERO cells. Its complete genome was purified and a region encompassing the hexon gene, the protease gene, the DNA binding protein (DBP) and the 100 kDa protein was amplified by PCR and sequenced by primer walking. Sequence analysis of these four genes showed that the new isolate had 80% identity to other primate adenoviruses and lacked recombination events. The study of the evolutionary relationships of this new monkey AdV based on the combined sequences of the four genes supported a close relationship to SAdV-3 and SAdV-6, lineages isolated from Rhesus monkeys. The clade formed by these three types is separated from the remaining clades and establishes a novel branch that is related to species HAdV-A, F and G. However, the genetic distance corresponding to the newly isolated monkey AdV considerably differs from these as to belong to a new, not yet established species. Results presented here widen our knowledge on SAdV and represents an important contribution to the understanding of the evolutionary history of primate adenoviruses.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We analyze the dynamics of a transient pattern formation in the Fréedericksz transition corresponding to a twist geometry. We present a calculation of the time-dependent structure factor based on a dynamical model which incorporates consistently the coupling of the director field with the velocity flow and also the effect of fluctuations. The appearance and development of a characteristic periodicity is described in terms of the time dependence of the maximum of the structure factor. We find a well-defined time for the appearance of the pattern and a subsequent stage of pattern development in which the characteristic periodicity tends to an asymptotic value.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A nonlinear calculation of the dynamics of transient pattern formation in the Fréedericksz transition is presented. A Gaussian decoupling is used to calculate the time dependence of the structure factor. The calculation confirms the range of validity of linear calculations argued in earlier work. In addition, it describes the decay of the transient pattern.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sacoglossan sea slugs (Mollusca: Opisthobranchia) are one of the few groups of specialist herbivores in the marine environment. Sacoglossans feed suctorially on the cell sap of macroalgae, from which they 'steal' chloroplasts (kleptoplasty) and deterrent substances (kleptochemistry), retaining intracellularly both host plastids and chemicals. The ingested chloroplasts continue to photosynthesize for periods ranging from a few hours or days up to 3 months in some species. Shelled, more primitive sacoglossans feed only on the siphonalean green algal genus Caulerpa, and they do not have functional kleptoplasty. The diet of sacoglossans has radiated out from this ancestral food. Among the shell-less Plakobranchidae (=Elysiidae), the more primitive species feed on other siphonales (families Derbesiaceae, Caulerpaceae, Bryopsidaceae and Codiaceae) and fix carbon, while the more 'advanced' species within the Plakobranchidae and Limapontioidae have a more broad dietary range. Most of these 'advanced' species are unable to fix carbon because the chloroplasts of their food algae are mechanically disrupted during ingestion. Mesoherbivores are likely to be eaten if they live on palatable seaweeds, their cryptic coloration and form not always keeping them safe from predators. Sacoglossans prefer to live on and eat chemically defended seaweeds, and they use ingested algal chemicals as deterrents of potential predators. The most ancestral shelled sacoglossans (Oxynoidae) and some Plakobranchidae such as Elysia translucens, Thuridilla hopei and Bosellia mimetica have developed a diet-derived chemical defense mechanism. Oxynoids and Thuridilla hopei are able to biomodify the algal metabolites. However, the Plakobranchidae Elysia timida and E. viridis, together with Limapontioidea species, are characterized by their ability to de novo synthesize polypropionate metabolites. A whole analysis of kleptoplasty and chemical defenses in sacoglossans may offer a better understanding of the ecology and evolution of these specialized opisthobranchs. In this paper we summarize some of the latest findings, related mainly to Mediterranean species, and offer a plausible evolutionary scenario based on the biological and chemical trends we can distinguish in them.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dysploidy and polyploidy are well documented in the large genus Centaurea, especially in sect. Acrocentron and in a small group of species from the Iberian Peninsula described as sect. Chamaecyanus, closely related to Acrocentron. We have explored two interesting cases of polyploid series in both sections: the polyploid series of Centaurea toletana in sect. Chamaecyanus and the series of C. ornata group in sect. Acrocentron. We have carried out a karyological study using both classic karyotype analyses and chromosome banding with fluorochromes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Les caractéristiques avançades de Delphinium L. subgèn. Delphinium (taxons anuals) son comparades amb les del subgèn. Delphinastrum (DC.) Wang i del subgèn. Oligophyllon Dimitrova (taxons perennes). La morfología floral mostra un intercanvi de funcions entre els petals laterals i els petals superiors i restructura de la inflorescencia de molts taxons anuals afavoreix un augment de les taxes de geitonogàmia-autogàmia. L'evolució dels cariotips és basada en una disminució de la longitud total dels cromosomes i en un increment del grau d'asimetria; el nombre cromosómic roman constant per a totes les especies anuals (2n = 16). Leficàcia de la dispersió de les especies anuals és mes gran que no pas la de les especies perennes, per causa d'un increment en la producció de granes i per l'augment de la flotabilitat, tant a l'aire com a l'aigua. D'altres caractéristiques adaptatives avançades son l'adquisició de noves defenses químiques i l'aparició d'un nou tipus embriogènic. Els nínxols ecologies del subgèn. Delphinium corresponen a habitats oberts i alterats, en comparado amb els habitats estables i relativament tancats dels subgéneros Delphinastrum i Oligophyllon. Es presenta una hipótesi global de les tendencies évolutives observades en anuals vs. perennes en connexió amb consideracions biogeogràfiques, així corn un resum taxonomic final.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Visual perception is initiated in the photoreceptor cells of the retina via the phototransduction system.This system has shown marked evolution during mammalian divergence in such complex attributes as activation time and recovery time. We have performed a molecular evolutionary analysis of proteins involved in mammalianphototransduction in order to unravel how the action of natural selection has been distributed throughout thesystem to evolve such traits. We found selective pressures to be non-randomly distributed according to both a simple protein classification scheme and a protein-interaction network representation of the signaling pathway. Proteins which are topologically central in the signaling pathway, such as the G proteins, as well as retinoid cycle chaperones and proteins involved in photoreceptor cell-type determination, were found to be more constrained in their evolution. Proteins peripheral to the pathway, such as ion channels and exchangers, as well as the retinoid cycle enzymes, have experienced a relaxation of selective pressures. Furthermore, signals of positive selection were detected in two genes: the short-wave (blue) opsin (OPN1SW) in hominids and the rod-specific Na+/Ca2+,K+ ion exchanger (SLC24A1) in rodents. The functions of the proteins involved in phototransduction and the topology of the interactions between them have imposed non-random constraints on their evolution. Thus, in shaping or conserving system-level phototransduction traits, natural selection has targeted the underlying proteins in a concerted manner.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Global analyses of human disease genes by computational methods have yielded important advances in the understanding of human diseases. Generally these studies have treated the group of disease genes uniformly, thus ignoring the type of disease-causing mutations (dominant or recessive). In this report we present a comprehensive study of the evolutionary history of autosomal disease genes separated by mode of inheritance.Results: We examine differences in protein and coding sequence conservation between dominant and recessive human disease genes. Our analysis shows that disease genes affected by dominant mutations are more conserved than those affected by recessive mutations. This could be a consequence of the fact that recessive mutations remain hidden from selection while heterozygous. Furthermore, we employ functional annotation analysis and investigations into disease severity to support this hypothesis. Conclusion: This study elucidates important differences between dominantly- and recessively-acting disease genes in terms of protein and DNA sequence conservation, paralogy and essentiality. We propose that the division of disease genes by mode of inheritance will enhance both understanding of the disease process and prediction of candidate disease genes in the future.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Structural variation has played an important role in the evolutionary restructuring of human and great ape genomes. Recent analyses have suggested that the genomes of chimpanzee and human have been particularly enriched for this form of genetic variation. Here, we set out to assess the extent of structural variation in the gorilla lineage by generating 10-fold genomic sequence coverage from a western lowland gorilla and integrating these data into a physical and cytogenetic framework of structural variation. We discovered and validated over 7665 structural changes within the gorilla lineage, including sequence resolution of inversions, deletions, duplications, and mobile element insertions. A comparison with human and other ape genomes shows that the gorilla genome has been subjected to the highest rate of segmental duplication. We show that both the gorilla and chimpanzee genomes have experienced independent yet convergent patterns of structural mutation that have not occurred in humans, including the formation of subtelomeric heterochromatic caps, the hyperexpansion of segmental duplications, and bursts of retroviral integrations. Our analysis suggests that the chimpanzee and gorilla genomes are structurally more derived than either orangutan or human genomes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Next-generation sequencing techniques such as exome sequencing can successfully detect all genetic variants in a human exome and it has been useful together with the implementation of variant filters to identify causing-disease mutations. Two filters aremainly used for the mutations identification: low allele frequency and the computational annotation of the genetic variant. Bioinformatic tools to predict the effect of a givenvariant may have errors due to the existing bias in databases and sometimes show a limited coincidence among them. Advances in functional and comparative genomics are needed in order to properly annotate these variants.The goal of this study is to: first, functionally annotate Common Variable Immunodeficiency disease (CVID) variants with the available bioinformatic methods in order to assess the reliability of these strategies. Sencondly, as the development of new methods to reduce the number of candidate genetic variants is an active and necessary field of research, we are exploring the utility of gene function information at organism level as a filter for rare disease genes identification. Recently, it has been proposed that only 10-15% of human genes are essential and therefore we would expect that severe rare diseases are mostly caused by mutations on them. Our goal is to determine whether or not these rare and severe diseases are caused by deleterious mutations in these essential genes. If this hypothesis were true, taking into account essential genes as a filter would be an interesting parameter to identify causingdisease mutations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background PPP1R6 is a protein phosphatase 1 glycogen-targeting subunit (PP1-GTS) abundant in skeletal muscle with an undefined metabolic control role. Here PPP1R6 effects on myotube glycogen metabolism, particle size and subcellular distribution are examined and compared with PPP1R3C/PTG and PPP1R3A/GM. Results PPP1R6 overexpression activates glycogen synthase (GS), reduces its phosphorylation at Ser-641/0 and increases the extracted and cytochemically-stained glycogen content, less than PTG but more than GM. PPP1R6 does not change glycogen phosphorylase activity. All tested PP1-GTS-cells have more glycogen particles than controls as found by electron microscopy of myotube sections. Glycogen particle size is distributed for all cell-types in a continuous range, but PPP1R6 forms smaller particles (mean diameter 14.4 nm) than PTG (36.9 nm) and GM (28.3 nm) or those in control cells (29.2 nm). Both PPP1R6- and GM-derived glycogen particles are in cytosol associated with cellular structures; PTG-derived glycogen is found in membrane- and organelle-devoid cytosolic glycogen-rich areas; and glycogen particles are dispersed in the cytosol in control cells. A tagged PPP1R6 protein at the C-terminus with EGFP shows a diffuse cytosol pattern in glucose-replete and -depleted cells and a punctuate pattern surrounding the nucleus in glucose-depleted cells, which colocates with RFP tagged with the Golgi targeting domain of β-1,4-galactosyltransferase, according to a computational prediction for PPP1R6 Golgi location. Conclusions PPP1R6 exerts a powerful glycogenic effect in cultured muscle cells, more than GM and less than PTG. PPP1R6 protein translocates from a Golgi to cytosolic location in response to glucose. The molecular size and subcellular location of myotube glycogen particles is determined by the PPP1R6, PTG and GM scaffolding.