49 resultados para Drip Irrigation
Resumo:
La introducción de los mercados de agua se ha planteado en los últimos años como un instrumento eficaz para la mejora de la gestión de los recursos hídricos en la agricultura, centrando la atención en las ganancias económicas que de ellos pueden resultar. No obstante, la efectividad e incluso la viabilidad de los mercados de agua está limitada por factores de diverso tipo que contribuyen al incremento de los costes derivados de su posible implantación. El objetivo de este estudio es mostrar, mediante la simulación de un mercado de agua, la influencia que las diferencias en la productividad de las explotaciones participantes tienen sobre tales ganancias en presencia de costes de transacción. Se mostrará que tales diferencias determinan la viabilidad de los mercados de agua y se calcula el nivel de heterogeneidadmínimo que compensa los costes generados conel sistema de mercado en el caso específico de una zona de regadío del valle medio del Ebro
Resumo:
In previous years, irrigation and its management have become protagonists of a social debate that questions their economic, environmental and territorial limits in space and time. The hydraulic constructions as irrigation canals have played a central role in the attempt to “dominate” the water resources and so control the territory. However and after some time, both the modernization of traditional irrigation as the promotion of new irrigation projects are called into question due to the rise of environmental demands and promoting governance as a mechanism favourable to agreements between stakeholders. In Catalonia, the irrigation management must deal both efficiency requirements as to the compatibility between consumptive and non-consumptive water uses well as the social legitimacy of projects that exceed sectoral interest. The situation analysis of Bajo Ter and Muga historic irrigation canals and the running project of Segarra-Garrigues irrigation canal emphasize the need to promote a territorial management model capable of integrating and legitimize different competing water views
Resumo:
Irrigation has traditionally constituted one of the most characteristic and emblematic agricultural mosaics of the Mediterranean as a key factor of socio-economic dynamism of the territorial matrix. In recent years there has been an important scientific, intellectual and social environment mobilization around water uses and, in particular, around the main socio-economic use of resource: irrigation, which is undergoing an intense and accelerated transformation process. Thus, in parallel with the decline of traditional irrigation systems, located in areas with natural availability of water, fertile soil and appropriate topographic conditions, the socio-economic changes in the last decade have stimulated the appearance of new irrigated areas with environmental, social and economic disparate characteristics. As a result, the irrigation management model has been conditioned to respond to the new parameters of water scarcity and resource efficiency. In addition, policies and actors have evolved over time as a consequence of disparate priorities –and often conflicting– in terms of irrigation, making necessary the gear of different discourses. In this context, the Model of social commitment of irrigation proposed by the Institutional and Social Innovations in Irrigation Mediterranean Management (ISIIMM) can become a starting example
Resumo:
The present paper studied the performance of the stable isotope signatures of carbon (δ13C), nitrogen (δ15N) and oxygen (δ18O) in plants when used to assess early vigour and grain yield (GY) in durum wheat growing under mild and moderate Mediterranean stress conditions. A collection of 114 recombinant inbred lines was grown under rainfed (RF) and supplementary irrigation (IR) conditions. Broad sense heritabilities (H2) for GY and harvest index (HI) were higher under RF conditions than under IR. Broad sense heritabilities for δ13C were always above 0·60, regardless of the plant part studied, with similar values for IR and RF trials. Some of the largest genetic correlations with GY were those shown by the δ13C content of the flag leaf blade and mature grains. Under both water treatments, mature grains showed the highest negative correlations between δ13C and GY across genotypes. Flag leaf δ13C was negatively correlated with GY only under RF conditions. The δ13C in seedlings was negatively correlated, under IR conditions only, with GY but also with early vigour. The sources of variation in early vigour were studied by stepwise analysis using the stable isotope signatures measured in seedlings. The δ13C was able to explain almost 0·20 of this variation under RF, but up to 0·30 under IR. In addition, nitrogen concentration in seedlings accounted for another 0·05 of variation, increasing the amount explained to 0·35. The sources of variation in GY were also studied through stable isotope signatures and biomass of different plant parts: δ13C was always the first parameter to appear in the models for both water conditions, explaining c. 0·20 of the variation. The second parameter (δ15N or N concentration of grain, or biomass at maturity) depended on the water conditions and the plant tissue being analysed. Oxygen isotope composition (δ18O) was only able to explain a small amount of the variation in GY. In this regard, despite the known and previously described value of δ13C as a tool in breeding, δ15N is confirmed as an additional tool in the present study. Oxygen isotope composition does not seem to offer any potential, at least under the conditions of the present study.