66 resultados para Delay equations
Resumo:
In this paper we address the problem of consistently constructing Langevin equations to describe fluctuations in nonlinear systems. Detailed balance severely restricts the choice of the random force, but we prove that this property, together with the macroscopic knowledge of the system, is not enough to determine all the properties of the random force. If the cause of the fluctuations is weakly coupled to the fluctuating variable, then the statistical properties of the random force can be completely specified. For variables odd under time reversal, microscopic reversibility and weak coupling impose symmetry relations on the variable-dependent Onsager coefficients. We then analyze the fluctuations in two cases: Brownian motion in position space and an asymmetric diode, for which the analysis based in the master equation approach is known. We find that, to the order of validity of the Langevin equation proposed here, the phenomenological theory is in agreement with the results predicted by more microscopic models
Resumo:
We study the motion of a particle governed by a generalized Langevin equation. We show that, when no fluctuation-dissipation relation holds, the long-time behavior of the particle may be from stationary to superdiffusive, along with subdiffusive and diffusive. When the random force is Gaussian, we derive the exact equations for the joint and marginal probability density functions for the position and velocity of the particle and find their solutions.
Resumo:
In this paper we study under which circumstances there exists a general change of gross variables that transforms any FokkerPlanck equation into another of the OrnsteinUhlenbeck class that, therefore, has an exact solution. We find that any FokkerPlanck equation will be exactly solvable by means of a change of gross variables if and only if the curvature tensor and the torsion tensor associated with the diffusion is zero and the transformed drift is linear. We apply our criteria to the Kubo and Gompertz models.
Resumo:
We develop several results on hitting probabilities of random fields which highlight the role of the dimension of the parameter space. This yields upper and lower bounds in terms of Hausdorff measure and Bessel-Riesz capacity, respectively. We apply these results to a system of stochastic wave equations in spatial dimension k >- 1 driven by a d-dimensional spatially homogeneous additive Gaussian noise that is white in time and colored in space.
Resumo:
In this paper we establish the existence and uniqueness of a solution for different types of stochastic differential equation with random initial conditions and random coefficients. The stochastic integral is interpreted as a generalized Stratonovich integral, and the techniques used to derive these results are mainly based on the path properties of the Brownian motion, and the definition of the Stratonovich integral.
Resumo:
This paper is devoted to prove a large-deviation principle for solutions to multidimensional stochastic Volterra equations.
Space Competition and Time Delays in Human Range Expansions. Application to the Neolithic Transition
Resumo:
Space competition effects are well-known in many microbiological and ecological systems. Here we analyze such an effectin human populations. The Neolithic transition (change from foraging to farming) was mainly the outcome of a demographic process that spread gradually throughout Europe from the Near East. In Northern Europe, archaeological data show a slowdown on the Neolithic rate of spread that can be related to a high indigenous (Mesolithic) population density hindering the advance as a result of the space competition between the two populations. We measure this slowdown from a database of 902 Early Neolithic sites and develop a time-delayed reaction-diffusion model with space competition between Neolithic and Mesolithic populations, to predict the observed speeds. The comparison of the predicted speed with the observations and with a previous non-delayed model show that both effects, the time delay effect due to the generation lag and the space competition between populations, are crucial in order to understand the observations
Resumo:
Postprint (published version)
Resumo:
We study the existence of periodic solutions of the non--autonomous periodic Lyness' recurrence u_{n+2}=(a_n+u_{n+1})/u_n, where {a_n} is a cycle with positive values a,b and with positive initial conditions. It is known that for a=b=1 all the sequences generated by this recurrence are 5-periodic. We prove that for each pair (a,b) different from (1,1) there are infinitely many initial conditions giving rise to periodic sequences, and that the family of recurrences have almost all the even periods. If a is not equal to b, then any odd period, except 1, appears.
Resumo:
We use the mesoscopic nonequilibrium thermodynamics theory to derive the general kinetic equation of a system in the presence of potential barriers. The result is applied to a description of the evolution of systems whose dynamics is influenced by entropic barriers. We analyze in detail the case of diffusion in a domain of irregular geometry in which the presence of the boundaries induces an entropy barrier when approaching the exact dynamics by a coarsening of the description. The corresponding kinetic equation, named the Fick-Jacobs equation, is obtained, and its validity is generalized through the formulation of a scaling law for the diffusion coefficient which depends on the shape of the boundaries. The method we propose can be useful to analyze the dynamics of systems at the nanoscale where the presence of entropy barriers is a common feature.
Resumo:
We introduce a set of sequential integro-difference equations to analyze the dynamics of two interacting species. Firstly, we derive the speed of the fronts when a species invades a space previously occupied by a second species, and check its validity by means of numerical random-walk simulations. As an example, we consider the Neolithic transition: the predictions of the model are consistent with the archaeological data for the front speed, provided that the interaction parameter is low enough. Secondly, an equation for the coexistence time between the invasive and the invaded populations is obtained for the first time. It agrees well with the simulations, is consistent with observations of the Neolithic transition, and makes it possible to estimate the value of the interaction parameter between the incoming and the indigenous populations
Resumo:
We extend a previous model of the Neolithic transition in Europe [J. Fort and V. Méndez, Phys. Rev. Lett. 82, 867 (1999)] by taking two effects into account: (i) we do not use the diffusion approximation (which corresponds to second-order Taylor expansions), and (ii) we take proper care of the fact that parents do not migrate away from their children (we refer to this as a time-order effect, in the sense that it implies that children grow up with their parents, before they become adults and can survive and migrate). We also derive a time-ordered, second-order equation, which we call the sequential reaction-diffusion equation, and use it to show that effect (ii) is the most important one, and that both of them should in general be taken into account to derive accurate results. As an example, we consider the Neolithic transition: the model predictions agree with the observed front speed, and the corrections relative to previous models are important (up to 70%)
Resumo:
The inverse scattering problem concerning the determination of the joint time-delayDoppler-scale reflectivity density characterizing continuous target environments is addressed by recourse to the generalized frame theory. A reconstruction formula,involving the echoes of a frame of outgoing signals and its corresponding reciprocalframe, is developed. A ‘‘realistic’’ situation with respect to the transmission ofa finite number of signals is further considered. In such a case, our reconstruction formula is shown to yield the orthogonal projection of the reflectivity density onto a subspace generated by the transmitted signals.
Resumo:
Adaptació de l'algorisme de Kumar per resoldre sistemes d'equacions amb matrius de Toeplitz sobre els reals a cossos finits en un temps 0 (n log n).