57 resultados para Data clustering. Fuzzy C-Means. Cluster centers initialization. Validation indices
Resumo:
Flood simulation studies use spatial-temporal rainfall data input into distributed hydrological models. A correct description of rainfall in space and in time contributes to improvements on hydrological modelling and design. This work is focused on the analysis of 2-D convective structures (rain cells), whose contribution is especially significant in most flood events. The objective of this paper is to provide statistical descriptors and distribution functions for convective structure characteristics of precipitation systems producing floods in Catalonia (NE Spain). To achieve this purpose heavy rainfall events recorded between 1996 and 2000 have been analysed. By means of weather radar, and applying 2-D radar algorithms a distinction between convective and stratiform precipitation is made. These data are introduced and analyzed with a GIS. In a first step different groups of connected pixels with convective precipitation are identified. Only convective structures with an area greater than 32 km2 are selected. Then, geometric characteristics (area, perimeter, orientation and dimensions of the ellipse), and rainfall statistics (maximum, mean, minimum, range, standard deviation, and sum) of these structures are obtained and stored in a database. Finally, descriptive statistics for selected characteristics are calculated and statistical distributions are fitted to the observed frequency distributions. Statistical analyses reveal that the Generalized Pareto distribution for the area and the Generalized Extreme Value distribution for the perimeter, dimensions, orientation and mean areal precipitation are the statistical distributions that best fit the observed ones of these parameters. The statistical descriptors and the probability distribution functions obtained are of direct use as an input in spatial rainfall generators.
Resumo:
Dissolved organic matter (DOM) is a complex mixture of organic compounds, ubiquitous in marine and freshwater systems. Fluorescence spectroscopy, by means of Excitation-Emission Matrices (EEM), has become an indispensable tool to study DOM sources, transport and fate in aquatic ecosystems. However the statistical treatment of large and heterogeneous EEM data sets still represents an important challenge for biogeochemists. Recently, Self-Organising Maps (SOM) has been proposed as a tool to explore patterns in large EEM data sets. SOM is a pattern recognition method which clusterizes and reduces the dimensionality of input EEMs without relying on any assumption about the data structure. In this paper, we show how SOM, coupled with a correlation analysis of the component planes, can be used both to explore patterns among samples, as well as to identify individual fluorescence components. We analysed a large and heterogeneous EEM data set, including samples from a river catchment collected under a range of hydrological conditions, along a 60-km downstream gradient, and under the influence of different degrees of anthropogenic impact. According to our results, chemical industry effluents appeared to have unique and distinctive spectral characteristics. On the other hand, river samples collected under flash flood conditions showed homogeneous EEM shapes. The correlation analysis of the component planes suggested the presence of four fluorescence components, consistent with DOM components previously described in the literature. A remarkable strength of this methodology was that outlier samples appeared naturally integrated in the analysis. We conclude that SOM coupled with a correlation analysis procedure is a promising tool for studying large and heterogeneous EEM data sets.
Resumo:
We present molecular dynamics (MD) simulations results for dense fluids of ultrasoft, fully penetrable particles. These are a binary mixture and a polydisperse system of particles interacting via the generalized exponential model, which is known to yield cluster crystal phases for the corresponding monodisperse systems. Because of the dispersity in the particle size, the systems investigated in this work do not crystallize and form disordered cluster phases. The clusteringtransition appears as a smooth crossover to a regime in which particles are mostly located in clusters, isolated particles being infrequent. The analysis of the internal cluster structure reveals microsegregation of the big and small particles, with a strong homo-coordination in the binary mixture. Upon further lowering the temperature below the clusteringtransition, the motion of the clusters" centers-of-mass slows down dramatically, giving way to a cluster glass transition. In the cluster glass, the diffusivities remain finite and display an activated temperature dependence, indicating that relaxation in the cluster glass occurs via particle hopping in a nearly arrested matrix of clusters. Finally we discuss the influence of the microscopic dynamics on the transport properties by comparing the MD results with Monte Carlo simulations.
Resumo:
Several clinical studies have reported that EEG synchrony is affected by Alzheimer’s disease (AD). In this paper a frequency band analysis of AD EEG signals is presented, with the aim of improving the diagnosis of AD using EEG signals. In this paper, multiple synchrony measures are assessed through statistical tests (Mann–Whitney U test), including correlation, phase synchrony and Granger causality measures. Moreover, linear discriminant analysis (LDA) is conducted with those synchrony measures as features. For the data set at hand, the frequency range (5-6Hz) yields the best accuracy for diagnosing AD, which lies within the classical theta band (4-8Hz). The corresponding classification error is 4.88% for directed transfer function (DTF) Granger causality measure. Interestingly, results show that EEG of AD patients is more synchronous than in healthy subjects within the optimized range 5-6Hz, which is in sharp contrast with the loss of synchrony in AD EEG reported in many earlier studies. This new finding may provide new insights about the neurophysiology of AD. Additional testing on larger AD datasets is required to verify the effectiveness of the proposed approach.
Resumo:
We propose using the affinity propagation (AP) clustering algorithm for detecting multiple disjoint shoals, and we present an extension of AP, denoted by STAP, that can be applied to shoals that fusion and fission across time. STAP incorporates into AP a soft temporal constraint that takes cluster dynamics into account, encouraging partitions obtained at successive time steps to be consistent with each other. We explore how STAP performs under different settings of its parameters (strength of the temporal constraint, preferences, and distance metric) by applying the algorithm to simulated sequences of collective coordinated motion. We study the validity of STAP by comparing its results to partitioning of the same data obtained from human observers in a controlled experiment. We observe that, under specific circumstances, AP yields partitions that agree quite closely with the ones made by human observers. We conclude that using the STAP algorithm with appropriate parameter settings is an appealing approach for detecting shoal fusion-fission dynamics.
Resumo:
Background: We use an approach based on Factor Analysis to analyze datasets generated for transcriptional profiling. The method groups samples into biologically relevant categories, and enables the identification of genes and pathways most significantly associated to each phenotypic group, while allowing for the participation of a given gene in more than one cluster. Genes assigned to each cluster are used for the detection of pathways predominantly activated in that cluster by finding statistically significant associated GO terms. We tested the approach with a published dataset of microarray experiments in yeast. Upon validation with the yeast dataset, we applied the technique to a prostate cancer dataset. Results: Two major pathways are shown to be activated in organ-confined, non-metastatic prostate cancer: those regulated by the androgen receptor and by receptor tyrosine kinases. A number of gene markers (HER3, IQGAP2 and POR1) highlighted by the software and related to the later pathway have been validated experimentally a posteriori on independent samples. Conclusion: Using a new microarray analysis tool followed by a posteriori experimental validation of the results, we have confirmed several putative markers of malignancy associated with peptide growth factor signalling in prostate cancer and revealed others, most notably ERRB3 (HER3). Our study suggest that, in primary prostate cancer, HER3, together or not with HER4, rather than in receptor complexes involving HER2, could play an important role in the biology of these tumors. These results provide new evidence for the role of receptor tyrosine kinases in the establishment and progression of prostate cancer.
Resumo:
In recent years, new analytical tools have allowed researchers to extract historical information contained in molecular data, which has fundamentally transformed our understanding of processes ruling biological invasions. However, the use of these new analytical tools has been largely restricted to studies of terrestrial organisms despite the growing recognition that the sea contains ecosystems that are amongst the most heavily affected by biological invasions, and that marine invasion histories are often remarkably complex. Here, we studied the routes of invasion and colonisation histories of an invasive marine invertebrate Microcosmus squamiger (Ascidiacea) using microsatellite loci, mitochondrial DNA sequence data and 11 worldwide populations. Discriminant analysis of principal components, clustering methods and approximate Bayesian computation (ABC) methods showed that the most likely source of the introduced populations was a single admixture event that involved populations from two genetically differentiated ancestral regions - the western and eastern coasts of Australia. The ABC analyses revealed that colonisation of the introduced range of M. squamiger consisted of a series of non-independent introductions along the coastlines of Africa, North America and Europe. Furthermore, we inferred that the sequence of colonisation across continents was in line with historical taxonomic records - first the Mediterranean Sea and South Africa from an unsampled ancestral population, followed by sequential introductions in California and, more recently, the NE Atlantic Ocean. We revealed the most likely invasion history for world populations of M. squamiger, which is broadly characterized by the presence of multiple ancestral sources and non-independent introductions within the introduced range. The results presented here illustrate the complexity of marine invasion routes and identify a cause-effect relationship between human-mediated transport and the success of widespread marine non-indigenous species, which benefit from stepping-stone invasions and admixture processes involving different sources for the spread and expansion of their range.
Resumo:
Peer-reviewed
Resumo:
This paper explores the origins of Andorra’s financial cluster. It shows that the free movement of currency, the protection of infant industry, and geographical concentration lie at the foundation of the cluster’s competitive advantage. Drawing on a new set of data, the paper also provides for the first time an estimate of the total deposits held by Andorra’s banks between 1931 and 2007. Based on this new information, the paper reaches the conclusion that the development of the cluster went through four distinct phases in which large companies, acting as leaders, played an important role in enhancing the cluster’s business capabilities.
Resumo:
This study expands existing research by considering both exports and tourism as potential influencing factors for economic growth. While trade of goods has been proven as a means of growth for countries, inbound tourism as non-traditional exports, has been scarcely examined in the literature. Using data for Italy and Spain over the period 1954-2000 and 1964-2000 respectively, both exports of goods and tourism exports are included in the same model. Standard cointegration and Granger causality techniques are applied. The main results reveal the significance of both exports and tourism towards longterm growth with some peculiarities for each country.
Resumo:
New economic and enterprise needs have increased the interest and utility of the methods of the grouping process based on the theory of uncertainty. A fuzzy grouping (clustering) process is a key phase of knowledge acquisition and reduction complexity regarding different groups of objects. Here, we considered some elements of the theory of affinities and uncertain pretopology that form a significant support tool for a fuzzy clustering process. A Galois lattice is introduced in order to provide a clearer vision of the results. We made an homogeneous grouping process of the economic regions of Russian Federation and Ukraine. The obtained results gave us a large panorama of a regional economic situation of two countries as well as the key guidelines for the decision-making. The mathematical method is very sensible to any changes the regional economy can have. We gave an alternative method of the grouping process under uncertainty.
Resumo:
Marketing scholars have suggested a need for more empirical research on consumer response to malls, in order to have a better understanding of the variables that explain the behavior of the consumers. The segmentation methodology CHAID (Chi-square automatic interaction detection) was used in order to identify the profiles of consumers with regard to their activities at malls, on the basis of socio-demographic variables and behavioral variables (how and with whom they go to the malls). A sample of 790 subjects answered an online questionnaire. The CHAID analysis of the results was used to identify the profiles of consumers with regard to their activities at malls. In the set of variables analyzed the transport used in order to go shopping and the frequency of visits to centers are the main predictors of behavior in malls. The results provide guidelines for the development of effective strategies to attract consumers to malls and retain them there.