90 resultados para Core Sets
Resumo:
Although assignment games are hardly ever convex, in this paper a characterization of their set or extreme points of the core is provided, which is also valid for the class of convex games. For each ordering in the player set, a payoff vector is defined where each player receives his marginal contribution to a certain reduced game played by his predecessors. We prove that the whole set of reduced marginal worth vectors, which for convex games coincide with the usual marginal worth vectors, is the set of extreme points of the core of the assignment game
Resumo:
There exist coalitional games with transferable utility which have the same core but different nucleoli. We show that this cannot happen in the case of assignment games. Whenever two assignment games have the same core, their nucleoli also coincide. To show this, we prove that the nucleolus of an assignment game coincides with that of its buyer-seller exact representative
Resumo:
[eng] In the context of cooperative TU-games, and given an order of players, we consider the problem of distributing the worth of the grand coalition as a sequentia decision problem. In each step of process, upper and lower bounds for the payoff of the players are required related to successive reduced games. Sequentially compatible payoffs are defined as those allocation vectors that meet these recursive bounds. The core of the game is reinterpreted as a set of sequentally compatible payoffs when the Davis-Maschler reduced game is considered (Th.1). Independently of the reduction, the core turns out to be the intersections of the family of the sets of sequentially compatible payoffs corresponding to the different possible orderings (Th.2), so it is in some sense order-independent. Finally, we analyze advantagenous properties for the first player
Resumo:
The monotonic core of a cooperative game with transferable utility (T.U.-game) is the set formed by all its Population Monotonic Allocation Schemes. In this paper we show that this set always coincides with the core of a certain game associated to the initial game.
Resumo:
The set of optimal matchings in the assignment matrix allows to define a reflexive and symmetric binary relation on each side of the market, the equal-partner binary relation. The number of equivalence classes of the transitive closure of the equal-partner binary relation determines the dimension of the core of the assignment game. This result provides an easy procedure to determine the dimension of the core directly from the entries of the assignment matrix and shows that the dimension of the core is not as much determined by the number of optimal matchings as by their relative position in the assignment matrix.
Resumo:
En aquest treball mostrem que, a diferència del cas bilateral, per als mercats multilaterals d'assignació coneguts amb el nom de Böhm-Bawerk assignment games, el nucleolus i el core-center, i. e. el centre de masses del core, no coincideixen en general. Per demostrar-ho provem que donant un m-sided Böhm-Bawerk assignment game les dues solucions anteriors poden obtenir-se respectivament del nucleolus i el core-center d'un joc convex definit en el conjunt format pels m sectors. Encara més, provem que per calcular el nucleolus d'aquest últim joc només les coalicions formades per un jugador o m-1 jugadors són importants. Aquests resultats simplifiquen el càlcul del nucleolus d'un multi-sided ¿¿ohm-Bawerk assignment market amb un número molt elevat d'agents.
Resumo:
En aquest treball demostrem que en la classe de jocs d'assignació amb diagonal dominant (Solymosi i Raghavan, 2001), el repartiment de Thompson (que coincideix amb el valor tau) és l'únic punt del core que és maximal respecte de la relació de dominància de Lorenz, i a més coincideix amb la solucié de Dutta i Ray (1989), també coneguda com solució igualitària. En segon lloc, mitjançant una condició més forta que la de diagonal dominant, introduïm una nova classe de jocs d'assignació on cada agent obté amb la seva parella òptima almenys el doble que amb qualsevol altra parella. Per aquests jocs d'assignació amb diagonal 2-dominant, el repartiment de Thompson és l'únic punt del kernel, i per tant el nucleolo.
Resumo:
In the assignment game framework, we try to identify those assignment matrices in which no entry can be increased without changing the coreof the game. These games will be called buyer¿seller exact games and satisfy the condition that each mixed¿pair coalition attains the corresponding matrix entry in the core of the game. For a given assignment game, a unique buyerseller exact assignment game with the same core is proved to exist. In order to identify this matrix and to provide a characterization of those assignment games which are buyer¿seller exact in terms of the assignment matrix, attainable upper and lower core bounds for the mixed¿pair coalitions are found. As a consequence, an open question posed in Quint (1991) regarding a canonical representation of a ¿45o¿lattice¿ by means of the core of an assignment game can now be answered
Resumo:
In this paper we prove that the Mas-Colell bargaining set coincides with the core for three-player balanced and superadditive cooperative games. This is no longer true without the superadditivity condition or for games with more than three-players. Furthermore, under the same assumptions, the coincidence between the Mas-Collel and the individual rational bargaining set (Vohra (1991)) is revealed. Keywords: Cooperative game, Mas-Colell bargaining set, balancedness, individual rational bargaining set. JEL classi fication: C71, D63, D71.
Resumo:
In this paper we study the equity core (Selten, 1978) and compare it with the core. A payo vector is in the equity core if no coalition can divide its value among its members proportionally to a given weight system and, in this way, give more to each member than the amount he or she receives in the payo vector. We show that the equity core is a compact extension of the core and that, for non-negative games, the intersection of all equity cores with respect to all weights coincides with the core of the game. Keywords: Cooperative game, equity core, equal division core, core. JEL classi cation: C71
Resumo:
This paper analyses the regional determinants of exit in Argentina. We find evidence of a dynamic revolving door by which past entrants increase current exits, particularly in the peripheral regions. In the central regions, current and past incumbents cause an analogous displacement effect. Also, exit shows a U-shaped relationship with respect to the informal economy, although the positive effect is weaker in the central regions. These findings point to the existence of a core-periphery structure in the spatial distribution of exits. Key words: firm exit, count data models, Argentina JEL: R12; R30; C33
Resumo:
[Eng] We study the marginal worth vectors and their convex hull, the socalled Weber set, from the original coalitional game and the transformed one, which is called the Weber set of level k. We prove that the core of the original game is included in each of the Weber set of level k, for any k, and that the Weber sets of consecutive levels form a chain if and only if the original game is 0-monotone. Even if the game is not 0-monotone, the intersection of the Weber sets for consecutive levels is always not empty, what is not the case for non-consecutive ones. Spanish education system.
Resumo:
[Eng] We study the marginal worth vectors and their convex hull, the socalled Weber set, from the original coalitional game and the transformed one, which is called the Weber set of level k. We prove that the core of the original game is included in each of the Weber set of level k, for any k, and that the Weber sets of consecutive levels form a chain if and only if the original game is 0-monotone. Even if the game is not 0-monotone, the intersection of the Weber sets for consecutive levels is always not empty, what is not the case for non-consecutive ones. Spanish education system.
Resumo:
We investigate under which dynamical conditions the Julia set of a quadratic rational map is a Sierpiński curve.