60 resultados para Compliant parallel mechanisms
Resumo:
Three important studies on acute exacerbations of chronic obstructive pulmonary disease (ECOPD)have been published in Thorax. Two of them, by Chang et al1(see page 764) and Hoiset et al2 (see page 775), show the importance of the cardiac biomarkers troponin T and NT-BNP (Nterminal pro-B-type natriuretic peptide) as strong predictors of the increased risk of death of patients hospitalised because of ECOPD.1 2.....
Resumo:
Epidermal growth factor (EGF) and insulin induced similar effects in isolated rat adipocytes. To determine whether EGF and insulin produced similar effects through the same mechanisms, we focused on lipolysis. Insulin inhibited the lipolysis stimulated by isoproterenol, glucagon (either alone or in combination with adenosine deaminase), adenosine deaminase itself, or forskolin. In contrast, EGF did not inhibit the lipolysis stimulated by forskolin or by hormones when the cells were also incubated with adenosine deaminase. The effect of insulin, but not that of EGF, on isoproterenol-stimulated lipolysis disappeared when adipocytes were incubated with 1 microM wortmannin. These results indicate that EGF and insulin affected lipolysis through different mechanisms. We observed that EGF, but not insulin, increased cytosolic Ca2+. The effect of EGF, but not that of insulin, disappeared when the cells were incubated in a Ca2+-free medium. We suggest that EGF, but not insulin, mediate its antilipolytic effect through a Ca2+-dependent mechanism which, however, do not involve Ca2+-activated protein kinase C isoforms. This is based on the following: 1) phorbol 12-myristate 13-acetate affected lipolysis in an opposite way to that of EGF; and 2) the protein kinase C inhibitor bisindolylmaleimide GF 109203X did not affect the antilipolytic action of EGF. Our results indicate that the antilipolytic effect of EGF resembles more that of vasopressin than that of insulin.
Resumo:
Adipose tissue (AT) is distributed as large differentiated masses, and smaller depots covering vessels, and organs, as well as interspersed within them. The differences between types and size of cells makes AT one of the most disperse and complex organs. Lipid storage is partly shared by other tissues such as muscle and liver. We intended to obtain an approximate estimation of the size of lipid reserves stored outside the main fat depots. Both male and female rats were made overweight by 4-weeks feeding of a cafeteria diet. Total lipid content was analyzed in brain, liver, gastrocnemius muscle, four white AT sites: subcutaneous, perigonadal, retroperitoneal and mesenteric, two brown AT sites (interscapular and perirenal) and in a pool of the rest of organs and tissues (after discarding gut contents). Organ lipid content was estimated and tabulated for each individual rat. Food intake was measured daily. There was a surprisingly high proportion of lipid not accounted for by the main macroscopic AT sites, even when brain, liver and BAT main sites were discounted. Muscle contained about 8% of body lipids, liver 1-1.4%, four white AT sites lipid 28-63% of body lipid, and the rest of the body (including muscle) 38-44%. There was a good correlation between AT lipid and body lipid, but lipid in"other organs" was highly correlated too with body lipid. Brain lipid was not. Irrespective of dietary intake, accumulation of body fat was uniform both for the main lipid storage and handling organs: large masses of AT (but also liver, muscle), as well as in the"rest" of tissues. These storage sites, in specialized (adipose) or not-specialized (liver, muscle) tissues reacted in parallel against a hyperlipidic diet challenge. We postulate that body lipid stores are handled and regulated coordinately, with a more centralized and overall mechanisms than usually assumed.
Mechanisms underlying cytotoxicity induced by engineered nanomaterials: a review of in vitro studies
Resumo:
Engineered nanomaterials are emerging functional materials with technologically interesting properties and a wide range of promising applications, such as drug delivery devices, medical imaging and diagnostics, and various other industrial products. However, concerns have been expressed about the risks of such materials and whether they can cause adverse effects. Studies of the potential hazards of nanomaterials have been widely performed using cell models and a range of in vitro approaches. In the present review, we provide a comprehensive and critical literature overview on current in vitro toxicity test methods that have been applied to determine the mechanisms underlying the cytotoxic effects induced by the nanostructures. The small size, surface charge, hydrophobicity and high adsorption capacity of nanomaterial allow for specific interactions within cell membrane and subcellular organelles, which in turn could lead to cytotoxicity through a range of different mechanisms. Finally, aggregating the given information on the relationships of nanomaterial cytotoxic responses with an understanding of its structure and physicochemical properties may promote the design of biologically safe nanostructures.
Resumo:
We present an algorithm for the computation of reducible invariant tori of discrete dynamical systems that is suitable for tori of dimensions larger than 1. It is based on a quadratically convergent scheme that approximates, at the same time, the Fourier series of the torus, its Floquet transformation, and its Floquet matrix. The Floquet matrix describes the linearization of the dynamics around the torus and, hence, its linear stability. The algorithm presents a high degree of parallelism, and the computational effort grows linearly with the number of Fourier modes needed to represent the solution. For these reasons it is a very good option to compute quasi-periodic solutions with several basic frequencies. The paper includes some examples (flows) to show the efficiency of the method in a parallel computer. In these flows we compute invariant tori of dimensions up to 5, by taking suitable sections.
Resumo:
For a massless fluid (density = 0), the steady flow along a duct is governed exclusively by viscous losses. In this paper, we show that the velocity profile obtained in this limit can be used to calculate the pressure drop up to the first order in density. This method has been applied to the particular case of a duct, defined by two plane-parallel discs. For this case, the first-order approximation results in a simple analytical solution which has been favorably checked against numerical simulations. Finally, an experiment has been carried out with water flowing between the discs. The experimental results show good agreement with the approximate solution
Resumo:
Background: Bone morphogenetic proteins (BMPs) have been shown to participate in the patterning and specification of several tissues and organs during development and to regulate cell growth, differentiation and migration in different cell types. BMP-mediated cell migration requires activation of the small GTPase Cdc42 and LIMK1 activities. In our earlier report we showed that activation of LIMK1 also requires the activation of PAKs through Cdc42 and PI3K. However, the requirement of additional signaling is not clearly known. Methodology/Principal Findings: Activation of p38 MAPK has been shown to be relevant for a number of BMP-2¿s physiological effects. We report here that BMP-2 regulation of cell migration and actin cytoskeleton remodelling are dependent on p38 activity. BMP-2 treatment of mesenchymal cells results in activation of the p38/MK2/Hsp25 signaling pathway downstream from the BMP receptors. Moreover, chemical inhibition of p38 signaling or genetic ablation of either p38¿ or MK2 blocks the ability to activate the downstream effectors of the pathway and abolishes BMP-2-induction of cell migration. These signaling effects on p38/MK2/Hsp25 do not require the activity of either Cdc42 or PAK, whereas p38/MK2 activities do not significantly modify the BMP-2-dependent activation of LIMK1, measured by either kinase activity or with an antibody raised against phospho-threonine 508 at its activation loop. Finally, phosphorylated Hsp25 colocalizes with the BMP receptor complexes in lamellipodia and overexpression of a phosphorylation mutant form of Hsp25 is able to abolish the migration of cells in response to BMP-2. Conclusions: These results indicate that Cdc42/PAK/LIMK1 and p38/MK2/Hsp25 pathways, acting in parallel and modulating specific actin regulatory proteins, play a critical role in integrating responses during BMP-induced actin reorganization and cell migration.
Resumo:
Previous studies have shown that rat intestinal immunoglobulin A (IgA) concentration and lymphocyte composition of the intestinal immune system were influenced by a highly enriched cocoa diet. The aim of this study was to dissect the mechanisms by which a long-term high cocoa intake was capable of modifying gut secretory IgA in Wistar rats. After 7 weeks of nutritional intervention, Peyer's patches, mesenteric lymph nodes and the small intestine were excised for gene expression assessment of IgA, transforming growth factor ß, C-C chemokine receptor-9 (CCR9), interleukin (IL)-6, CD40, retinoic acid receptors (RAR¿ and RARß), C-C chemokine ligand (CCL)-25 and CCL28 chemokines, polymeric immunoglobulin receptor and toll-like receptors (TLR) expression by real-time polymerase chain reaction. As in previous studies, secretory IgA concentration decreased in intestinal wash and fecal samples after cocoa intake. Results from the gene expression showed that cocoa intake reduced IgA and IL¿6 in Peyer's patches and mesenteric lymph nodes, whereas in small intestine, cocoa decreased IgA, CCR9, CCL28, RAR¿ and RARß. Moreover, cocoa-fed animals presented an altered TLR expression pattern in the three compartments studied. In conclusion, a high-cocoa diet down-regulated cytokines such as IL-6, which is required for the activation of B cells to become IgA-secreting cells, chemokines and chemokine receptors, such as CCL28 and CCR9 together with RAR¿ and RARß, which are involved in the gut homing of IgA-secreting cells. Moreover, cocoa modified the cross-talk between microbiota and intestinal cells as was detected by an altered TLR pattern. These overall effects in the intestine may explain the intestinal IgA down-regulatory effect after the consumption of a long-term cocoa-enriched diet.
Resumo:
Peer-reviewed
Resumo:
Self-organization is a growing interdisciplinary field of research about a phenomenon that can be observed in the Universe, in Nature and in social contexts. Research on self-organization tries to describe and explain forms, complex patterns and behaviours that arise from a collection of entities without an external organizer. As researchers in artificial systems, our aim is not to mimic self-organizing phenomena arising in Nature, but to understand and to control underlying mechanisms allowing desired emergence of forms, complex patterns and behaviours. Rather than attempting to eliminate such self-organization in artificial systems, we think that this might be deliberately harnessed in order to reach desirable global properties. In this paper we analyze three forms of self-organization: stigmergy, reinforcement mechanisms and cooperation. The amplification phenomena founded in stigmergic process or in reinforcement process are different forms of positive feedbacks that play a major role in building group activity or social organization. Cooperation is a functional form for self-organization because of its ability to guide local behaviours in order to obtain a relevant collective one. For each forms of self-organisation, we present a case study to show how we transposed it to some artificial systems and then analyse the strengths and weaknesses of such an approach
Resumo:
Background: Since barrier protection measures to avoid contact with allergens are being increasingly developed, we assessed the clinical efficacy and tolerability of a topical nasal microemulsion made of glycerol esters in patients with allergic rhinitis. Methods: Randomized, controlled, double-blind, parallel group, multicentre, multinational clinical trial in which adult patients with allergic rhinitis or rhinoconjunctivitis due to sensitization to birch, grass or olive tree pollens received treatment with topical microemulsion or placebo during the pollen seasons. Efficacy variables included scores in the mini-RQLQ questionnaire, number and severity of nasal, ocular and lung signs and symptoms, need for symptomatic medications and patients" satisfaction with treatment. Adverse events were also recorded. Results: Demographic characteristics were homogeneous between groups and mini-RQLQ scores did not differ significantly at baseline (visit 1). From symptoms recorded in the diary cards, the ME group showed statistically significant better scores for nasal congestion (0.72 vs. 1.01; p = 0.017) and mean total nasal symptoms (0.7 vs. 0.9; p = 0.045). At visit 2 (pollen season), lower values were observed in the mini-RQLQ in the ME group, although there were no statistically significant differences between groups in both full analysis set (FAS) and patients completing treatment (PPS) populations. The results obtained in the nasal symptoms domain of the mini-RQLQ at visit 2 showed the highest difference (−0.43; 95% CI: -0.88 to 0.02) for the ME group in the FAS population. The topical microemulsion was safe and well tolerated and no major discomforts were observed. Satisfaction rating with the treatment was similar between the groups. Conclusions: The topical application of the microemulsion is a feasible and safe therapy in the prevention of allergic symptoms, particularly nasal congestion.
Resumo:
We present parallel characterizations of two different values in the framework of restricted cooperation games. The restrictions are introduced as a finite sequence of partitions defined on the player set, each of them being coarser than the previous one, hence forming a structure of different levels of a priori unions. On the one hand, we consider a value first introduced in Ref. [18], which extends the Shapley value to games with different levels of a priori unions. On the other hand, we introduce another solution for the same type of games, which extends the Banzhaf value in the same manner. We characterize these two values using logically comparable properties.
Resumo:
The Pyrenean mountain range is a slowly deforming belt with continuous and moderate seismic activity. To quantify its deformation field, we present the velocity field estimated from a GPS survey of the Pyrenees spanning 18 yr. The PotSis and ResPyr networks, including a total of 85 GPS sites, were installed and first measured in 1992 and 1995 1997, respectively, and remeasured in 2008 and 2010. We obtain a deformation field with velocities less than 1 mm yr−1 across the range. The estimated velocities for individual stations do not differ significantly from zero with 95 per cent confidence. Even so, we estimate a maximum extensional horizontal strain rate of 2.0 ± 1.7 nanostrain per year in a N S direction in the western part of the range. We do not interpret the vertical displacements due to their large uncertainties. In order to compare the horizontal strain rates with the seismic activity, we analyse a set of 194 focal mechanisms using three methods: (i) the 'r' factor relating their P and T axes, (ii) the stress tensors obtained by fault slip inversion and (iii) the strain-rate tensors. Stress and strain-rate tensors are estimated for: (i) the whole data set, (ii) the eastern and western parts of the range separately, and (iii) eight zones, which are defined based on the seismicity and the tectonic patterns of the Pyrenees. Each of these analyses reveals a lateral variation of the deformation style from compression and extension in the east to extension and strike-slip in the west of the range. Although the horizontal components of the strain-rate tensors estimated from the seismic data are slightly smaller in magnitude than those computed from the GPS velocity field, they are consistent within the 2σ uncertainties. Furthermore, the orientations of their principal axes agree with the mapped active faults.
Resumo:
The heated debate over whether there is only a single mechanism or two mechanisms for morphology has diverted valuable research energy away from the more critical questions about the neural computations involved in the comprehension and production of morphologically complex forms. Cognitive neuroscience data implicate many brain areas. All extant models, whether they rely on a connectionist network or espouse two mechanisms, are too underspecified to explain why more than a few brain areas differ in their activity during the processing of regular and irregular forms. No one doubts that the brain treats regular and irregular words differently, but brain data indicate that a simplistic account will not do. It is time for us to search for the critical factors free from theoretical blinders.
Resumo:
An increase in cognitive control has been systematically observed in responses produced immediately after the commission of an error. Such responses show a delay in reaction time (post-error slowing) and an increase in accuracy. To characterize the neurophysiological mechanism involved in the adaptation of cognitive control, we examined oscillatory electrical brain activity by electroencephalogram and its corresponding neural network by event-related functional magnetic resonance imaging in three experiments. We identified a new oscillatory thetabeta component related to the degree of post-error slowing in the correct responses following an erroneous trial. Additionally, we found that the activity of the right dorsolateral prefrontal cortex, the right inferior frontal cortex, and the right superior frontal cortex was correlated with the degree of caution shown in the trial following the commission of an error. Given the overlap between this brain network and the regions activated by the need to inhibit motor responses in a stop-signal manipulation, we conclude that the increase in cognitive control observed after the commission of an error is implemented through the participation of an inhibitory mechanism.