50 resultados para CO2-EXPANDED SOLVENTS
Resumo:
Drought is the main constraint on wheat yield in Mediterranean conditions. The photosynthesis, chlorophyll fluorescence and plant growth parameters of durum wheat (Triticum turgidum, L. var. durum) were compared at three [CO2] (i.e., depleted 260 ppm, current 400ppm and elevated 700 ppm) in plants subjected to twowater regimes (i.e.,well-wateredWW, and mildwater stress by drought orwater deficit WS), during pre-anthesis, post-anthesis and the end of grain filling. We showed that [CO2] effects on plants are modulated by water availability. Plants at depleted [CO2] showed photosynthetic acclimation (i.e., up-regulation) and reduced plant biomass and Harvest Index, but depleted [CO2] combined with WS has a more negative impact on plants with decreases in C assimilation and biomass. Plants at elevated [CO2] had decreased plant growth and photosynthesis in response to a down-regulation mechanism resulting from a decrease in Rubisco and N content, but plants exposed to a combination of elevated [CO2] and WS were the most negatively affected (e.g., on plant biomass).
Resumo:
Water stress is a defining characteristic of Mediterranean ecosystems, and is likely to become more severe in the coming decades. Simulation models are key tools for making predictions, but our current understanding of how soil moisture controls ecosystem functioning is not sufficient to adequately constrain parameterisations. Canopy-scale flux data from four forest ecosystems with Mediterranean-type climates were used in order to analyse the physiological controls on carbon and water flues through the year. Significant non-stomatal limitations on photosynthesis were detected, along with lesser changes in the conductance-assimilation relationship. New model parameterisations were derived and implemented in two contrasting modelling approaches. The effectiveness of two models, one a dynamic global vegetation model ('ORCHIDEE'), and the other a forest growth model particularly developed for Mediterranean simulations ('GOTILWA+'), was assessed and modelled canopy responses to seasonal changes in soil moisture were analysed in comparison with in situ flux measurements. In contrast to commonly held assumptions, we find that changing the ratio of conductance to assimilation under natural, seasonally-developing, soil moisture stress is not sufficient to reproduce forest canopy CO2 and water fluxes. However, accurate predictions of both CO2 and water fluxes under all soil moisture levels encountered in the field are obtained if photosynthetic capacity is assumed to vary with soil moisture. This new parameterisation has important consequences for simulated responses of carbon and water fluxes to seasonal soil moisture stress, and should greatly improve our ability to anticipate future impacts of climate changes on the functioning of ecosystems in Mediterranean-type climates.
Resumo:
This paper analyses the international inequalities in CO2 emissions intensity for the period 1971- 2009 and assesses explanatory factors. Multiplicative, group and additive methodologies of inequality decomposition are employed. The first allows us to clarify the separated role of the carbonisation index and the energy intensity in the pattern observed for inequalities in CO2 intensities; the second allows us to understand the role of regional groups; and the third allows us to investigate the role of different fossil energy sources (coal, oil and gas). The results show that, first, the reduction in global emissions intensity has coincided with a significant reduction in international inequality. Second, the bulk of this inequality and its reduction are attributed to differences between the groups of countries considered. Third, coal is the main energy source explaining these inequalities, although the growth in the relative contribution of gas is also remarkable. Fourth, the bulk of inequalities between countries and its decline are explained by differences in energy intensities, although there are significant differences in the patterns demonstrated by different groups of countries.
Resumo:
This paper analyzes the carbon dioxide emissions of the services sectors subsystem of Uruguay in 2004. Services, with the exception of transport, are often considered intangible because of their low level of direct emissions. However, the provision of services requires inputs produced by other sectors, including several highly materialintensive sectors. Through input–output analysis we investigate the relationship between the services subsystem and the rest of the economy as regards carbon dioxide emissions. This approach allows us to study the importance of the set of services branches as a unit in the economic structure as well as to analyze in detail the relationship between the branches. The results depict that services’ direct emissions are the main component, as a consequence of transport-related sectors. However, the pollution that the services subsystem makes the rest of the economy produce is very significant, and it is almost all explained by non-transport-related sectors. This analysis is useful for determining the sectors in which mitigation policies are more effective, and whether they would be better tackled through technical improvements and better practices or through demand policies.
Resumo:
This paper uses the possibilities provided by the regression-based inequality decomposition (Fields, 2003) to explore the contribution of different explanatory factors to international inequality in CO2 emissions per capita. In contrast to previous emissions inequality decompositions, which were based on identity relationships (Duro and Padilla, 2006), this methodology does not impose any a priori specific relationship. Thus, it allows an assessment of the contribution to inequality of different relevant variables. In short, the paper appraises the relative contributions of affluence, sectoral composition, demographic factors and climate. The analysis is applied to selected years of the period 1993–2007. The results show the important (though decreasing) share of the contribution of demographic factors, as well as a significant contribution of affluence and sectoral composition.