60 resultados para Brown Norway rat
Resumo:
Adipose tissue (AT) is distributed as large differentiated masses, and smaller depots covering vessels, and organs, as well as interspersed within them. The differences between types and size of cells makes AT one of the most disperse and complex organs. Lipid storage is partly shared by other tissues such as muscle and liver. We intended to obtain an approximate estimation of the size of lipid reserves stored outside the main fat depots. Both male and female rats were made overweight by 4-weeks feeding of a cafeteria diet. Total lipid content was analyzed in brain, liver, gastrocnemius muscle, four white AT sites: subcutaneous, perigonadal, retroperitoneal and mesenteric, two brown AT sites (interscapular and perirenal) and in a pool of the rest of organs and tissues (after discarding gut contents). Organ lipid content was estimated and tabulated for each individual rat. Food intake was measured daily. There was a surprisingly high proportion of lipid not accounted for by the main macroscopic AT sites, even when brain, liver and BAT main sites were discounted. Muscle contained about 8% of body lipids, liver 1-1.4%, four white AT sites lipid 28-63% of body lipid, and the rest of the body (including muscle) 38-44%. There was a good correlation between AT lipid and body lipid, but lipid in"other organs" was highly correlated too with body lipid. Brain lipid was not. Irrespective of dietary intake, accumulation of body fat was uniform both for the main lipid storage and handling organs: large masses of AT (but also liver, muscle), as well as in the"rest" of tissues. These storage sites, in specialized (adipose) or not-specialized (liver, muscle) tissues reacted in parallel against a hyperlipidic diet challenge. We postulate that body lipid stores are handled and regulated coordinately, with a more centralized and overall mechanisms than usually assumed.
Resumo:
The topographical distribution of sciatic and femoral nerve sensory neuronal somata in the L4 dorsal root ganglion of the adult rat was mapped after retrograde tracing with one or two of the dyes Fast Blue, Fluoro-Gold, or Diamidino Yellow. The tracers were applied to the proximal transected end of either nerve alone, or from both nerves in the same animal using separate tracers. Three-dimensional reconstructions of the distribution of labelled neurones were made from serial sections of the L4 dorsal root ganglion which is the only ganglion that these two nerves share. The results showed that with little overlap, femoral nerve neurones distribute dorsally and rostrally whereas sciatic nerve neurones distribute medially and ventrally. This finding indicates the existence of a somatotopical organisation for the representation of different peripheral nerves in dorsal root ganglia of adult animals.
Resumo:
The ascending midbrain 5-HT neurons to the forebrain may be dysregulated in depression and have a reduced trophic support. With in situ proximity ligation assay (PLA) and supported by coimmunoprecipitation and colocation of the FGFR1 and 5-HT1A immunoreactivities in the midbrain raphe cells, evidence for the existence of FGFR1-5-HT1A receptor heterocomplexes in the dorsal and median raphe nuclei of the Sprague Dawley rat as well as in the rat medullary raphe RN33B cells has been obtained. Especially after combined FGF-2 and 8-OH-DPAT treatment, a marked and significant increase in PLA clusters was found in the RN33B cells. Similar results were reached with the FRET technique in HEK293T cells, where TM-V of the 5HT1A receptor was found to be part of the receptor interface. The combined treatment with FGF-2 and the 5-HT1A agonist also synergistically increased FGFR1 and ERK1/2 phosphorylation in the raphe midline area of the midbrain and the RN33B cells as well as their differentiation, as seen from development of the increased number and length of extensions per cell and their increased 5-HT immunoreactivity. These signaling and differentiation events were dependent on the receptor interface since they were blocked by incubation with TM-V but not by TM-II. Together, the results indicate that the 5-HT1A autoreceptors by being part of a FGFR1-5-HT1A receptor heterocomplex in the midbrain raphe 5-HT nerve cells appear to have a trophic role in the central 5-HT neuron systems in addition to playing a key role in reducing the firing of these neurons
Resumo:
Immersive virtual reality (IVR) typically generates the illusion in participants that they are in the displayed virtual scene where they can experience and interact in events as if they were really happening. Teleoperator (TO) systems place people at a remote physical destination embodied as a robotic device, and where typically participants have the sensation of being at the destination, with the ability to interact with entities there. In this paper, we show how to combine IVR and TO to allow a new class of application. The participant in the IVR is represented in the destination by a physical robot (TO) and simultaneously the remote place and entities within it are represented to the participant in the IVR. Hence, the IVR participant has a normal virtual reality experience, but where his or her actions and behaviour control the remote robot and can therefore have physical consequences. Here, we show how such a system can be deployed to allow a human and a rat to operate together, but the human interacting with the rat on a human scale, and the rat interacting with the human on the rat scale. The human is represented in a rat arena by a small robot that is slaved to the human"s movements, whereas the tracked rat is represented to the human in the virtual reality by a humanoid avatar. We describe the system and also a study that was designed to test whether humans can successfully play a game with the rat. The results show that the system functioned well and that the humans were able to interact with the rat to fulfil the tasks of the game. This system opens up the possibility of new applications in the life sciences involving participant observation of and interaction with animals but at human scale.
Resumo:
Immersive virtual reality (IVR) typically generates the illusion in participants that they are in the displayed virtual scene where they can experience and interact in events as if they were really happening. Teleoperator (TO) systems place people at a remote physical destination embodied as a robotic device, and where typically participants have the sensation of being at the destination, with the ability to interact with entities there. In this paper, we show how to combine IVR and TO to allow a new class of application. The participant in the IVR is represented in the destination by a physical robot (TO) and simultaneously the remote place and entities within it are represented to the participant in the IVR. Hence, the IVR participant has a normal virtual reality experience, but where his or her actions and behaviour control the remote robot and can therefore have physical consequences. Here, we show how such a system can be deployed to allow a human and a rat to operate together, but the human interacting with the rat on a human scale, and the rat interacting with the human on the rat scale. The human is represented in a rat arena by a small robot that is slaved to the human"s movements, whereas the tracked rat is represented to the human in the virtual reality by a humanoid avatar. We describe the system and also a study that was designed to test whether humans can successfully play a game with the rat. The results show that the system functioned well and that the humans were able to interact with the rat to fulfil the tasks of the game. This system opens up the possibility of new applications in the life sciences involving participant observation of and interaction with animals but at human scale.
Resumo:
Between-country differences in medical and sociodemographic variables, and patient-related outcomes (PROs) before treatment might explain published variations of side effects after radical prostatecomy (RP) or radiotherapy (RAD) for prostate cancer (PCa). This hypothesis was tested among 1908 patients from the United States, Spain, and Norway. Significant between-country differences were observed for most factors investigated before treatment. The observations should be considered in comparison of the frequency and severity of internationally published studies. Background: In men with PCa, large variations of PROs after RP or high-dose RAD might be related to betweencountry differences of medical and sociodemographic variables, and differences in PROs before treatment in the sexual and urinary domains. Patients and Methods: In 1908 patients with localized PCa from Norway, the United States, or Spain, the relation between medical (prostate-specific antigen, Gleason score, cT-category) and sociodemographic variables (age, education, marital status) before treatment was investigated. Using the Expanded Prostate Cancer Index Composite questionnaire, PROs before treatment within the sexual and urinary domains were also considered. Results: Compared with the European patients, American patients were younger, fewer had comorbid conditions, and more had a high education level. Fifty-three percent of the US men eligible for RP had low-risk tumors compared with 42% and 31% among the Norwegian and the Spanish patients, respectively. Among the Spanish RAD patients, 54% had had low-risk tumors compared with 34% of the American and 21% of the Norwegian men planned for RAD, respectively. Compared with the European patients, significantly fewer US patients reported moderate or severe sexual dysfunction and related problems. In most subgroups, the number of patients with sexual or urinary dysfunction exceeded that of patients with bother related to the reported dysfunction. Conclusion: Statistically significant between-country differences were observed in medical and sociodemographic variables, and in PROs before treatment within the sexual and urinary domains. Large differences between reported dysfunction and related problems within the sexual and urinary domains indicate that dysfunction and bother should be reported separately in addition to calculation of summary scores. The documented differences, not at least regarding PROs, might in part explain the large variation of side effects after treatment evident in the medical literature
Resumo:
Control of brown spot of pear requires fungicide treatments of pear trees during the growing season. Scheduling fungicide sprays with the Brown spot of pear forecasting system (BSPcast) provides significantfungicide savings but does not increase the efficacy of disease control. Modifications in BSPcast wereintroduced in order to increase system performance. The changes consisted of: (1) the use of a daily infectionrisk (Rm≥0.2) instead of the 3-day cumulative risk (CR≥0.4) to guide the fungicide scheduling, and (2) theinclusion of the effect of relative humidity during interrupted wetness periods. Trials were performed during2 years in an experimental pear orchard in Spain. The modifications introduced did not result in increaseddisease control efficacy, compared with the original BSPcast system. In one year, no reduction in the numberof fungicide applications was obtained using the modified BSPcast system in comparison to the original system, but in the second year the number of treatments was reduced from 15 to 13. The original BSPcast model overestimated the daily infection risk in 6.5% of days with wetness periods with low relative humidity during the wetness interruption, and in these cases the modified version was more adequate
Resumo:
BACKGROUND: Lipoprotein lipase (LPL) is anchored at the vascular endothelium through interaction with heparan sulfate. It is not known how this enzyme is turned over but it has been suggested that it is slowly released into blood and then taken up and degraded in the liver. Heparin releases the enzyme into the circulating blood. Several lines of evidence indicate that this leads to accelerated flux of LPL to the liver and a temporary depletion of the enzyme in peripheral tissues. RESULTS: Rat livers were found to contain substantial amounts of LPL, most of which was catalytically inactive. After injection of heparin, LPL mass in liver increased for at least an hour. LPL activity also increased, but not in proportion to mass, indicating that the lipase soon lost its activity after being bound/taken up in the liver. To further study the uptake, bovine LPL was labeled with 125I and injected. Already two min after injection about 33 % of the injected lipase was in the liver where it initially located along sinusoids. With time the immunostaining shifted to the hepatocytes, became granular and then faded, indicating internalization and degradation. When heparin was injected before the lipase, the initial immunostaining along sinusoids was weaker, whereas staining over Kupffer cells was enhanced. When the lipase was converted to inactive before injection, the fraction taken up in the liver increased and the lipase located mainly to the Kupffer cells. CONCLUSIONS: This study shows that there are heparin-insensitive binding sites for LPL on both hepatocytes and Kupffer cells. The latter may be the same sites as those that mediate uptake of inactive LPL. The results support the hypothesis that turnover of endothelial LPL occurs in part by transport to and degradation in the liver, and that this transport is accelerated after injection of heparin.
Resumo:
In previous studies, we have demonstrated the inhibition of CD4 expression in rat lymphocytes treated with phorbol myristate acetate (PMA) by antisense oligonucleotides (AS-ODNs) directed against the AUG start region of the cd4 gene. The aim of the present study was to inhibit CD4 expression in lymphocytes without promoting CD4 synthesis and to determine the effect of this inhibition on CD4+ T cell function. Four 21-mer ODNs against the rat cd4 gene (AS-CD4-1 to AS-CD4-4) were used. Surface CD4 expression was measured by immunofluorescence staining and flow cytometry, and mRNA CD4 expression was measured by RT-PCR. T CD4+ cell function was determined by specific and unspecific proliferative response of rat-primed lymphocytes. After 24 hours of incubation, AS-CD4-2 and AS-CD4-4 reduced lymphocyte surface CD4 expression by 40%. This effect remained for 72 hours and was not observed on other surface molecules, such as CD3, CD5, or CD8. CD4 mRNA expression was reduced up to 40% at 24 hours with AS-CD4-2 and AS-CD4-4. After 48 hours treatment, CD4 mRNA decreased up to 27% and 29% for AS-CD4-2 and AS-CD4-4, respectively. AS-CD4-2 and AS-CD4-4 inhibited T CD4+ cell proliferative response upon antigen-specific and unspecific stimuli. Therefore, AS-ODNs against CD4 molecules inhibited surface and mRNA CD4 expression, under physiologic turnover and, consequently, modulate T CD4+ cell reactivity.
Resumo:
Brain damage caused by an acute injury depends on the initial severity of the injury and the time elapsed after the injury. To determine whether these two variables activate common mechanisms, we compared the response of the rat medial septum to insult with a graded series of concentrations of a-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) with the time-course effects of a low dose of AMPA. For this purpose we conducted a dose-response study at concentrations of AMPA between 0.27 and 10.8 nmol to measure atrophy of the septal area, losses of cholinergic and GABAergic neurons, astroglial and microglial reactions, and calcification. Cholinergic neurons, whose loss paralleled the degree of septal atrophy produced by AMPA, are more sensitive than GABAergic neurons to the injury produced by AMPA. At doses of AMPA above 2.7 nmol, calcification and the degree of microglial reaction increased only in the GABAergic region of the septal area, whereas atrophy and neuronal loss reached a plateau. We chose the 2.7-nmol dose of AMPA to determine how these parameters were modified between 4 days and 6 months after injection. We found that atrophy and neuronal loss increased progressively through the 6-month study period, whereas astrogliosis ceased to be observed after 1 month, and calcium precipitates were never detected. We conclude that septal damage does not increase with the intensity of an excitotoxic insult. Rather, it progresses continuously after the insult. Because these two situations involve different mechanisms, short-term paradigms are inappropriate for interpreting the pathogenic mechanisms responsible for long-term neurodegenerative processes.
Resumo:
In previous studies, we have demonstrated the inhibition of CD4 expression in rat lymphocytes treated with phorbol myristate acetate (PMA) by antisense oligonucleotides (AS-ODNs) directed against the AUG start region of the cd4 gene. The aim of the present study was to inhibit CD4 expression in lymphocytes without promoting CD4 synthesis and to determine the effect of this inhibition on CD4+ T cell function. Four 21-mer ODNs against the rat cd4 gene (AS-CD4-1 to AS-CD4-4) were used. Surface CD4 expression was measured by immunofluorescence staining and flow cytometry, and mRNA CD4 expression was measured by RT-PCR. T CD4+ cell function was determined by specific and unspecific proliferative response of rat-primed lymphocytes. After 24 hours of incubation, AS-CD4-2 and AS-CD4-4 reduced lymphocyte surface CD4 expression by 40%. This effect remained for 72 hours and was not observed on other surface molecules, such as CD3, CD5, or CD8. CD4 mRNA expression was reduced up to 40% at 24 hours with AS-CD4-2 and AS-CD4-4. After 48 hours treatment, CD4 mRNA decreased up to 27% and 29% for AS-CD4-2 and AS-CD4-4, respectively. AS-CD4-2 and AS-CD4-4 inhibited T CD4+ cell proliferative response upon antigen-specific and unspecific stimuli. Therefore, AS-ODNs against CD4 molecules inhibited surface and mRNA CD4 expression, under physiologic turnover and, consequently, modulate T CD4+ cell reactivity.
Resumo:
Brown trout is a cold-adapted freshwater species with restricted distribution to headwater streams in rivers of the South European peninsulas, where populations are highly vulnerable because Mediterranean regions are highly sensitive to the global climatic warming. Moreover, these populations are endangered due to the introgressive hybridization with cultured stocks. Individuals from six remnant populations in Western Mediterranean rivers were sequenced for the complete mitochondrial DNA control region and genotyped for 11 nuclear markers. Three different brown trout lineages were present in the studied region. Significant genetic divergence was observed among locations and a strong effect of genetic drift was suggested. An important stocking impact (close to 25%) was detected in the zone. Significant correlations between mitochondrial-based rates of hatchery introgression and water flow variation suggested a higher impact of stocked females in unstable habitats. In spite of hatchery introgression, all populations remained highly differentiated, suggesting that native genetic resources are still abundant. However, climatic predictions indicated that suitable habitats for the species in these rivers will be reduced and hence trout populations are highly endangered and vulnerable. Thus, management policies should take into account these predictions to design upstream refuge areas to protect remnant native trout in the region
Resumo:
The autophagic process is a lysosomal degradation pathway, which is activated during stress conditions, such as starvation or exercise. Regular exercise has beneficial effects on human health, including neuroprotection. However, the cellular mechanisms underlying these effects are incompletely understood. Endurance and a single bout of exercise induce autophagy not only in brain but also in peripheral tissues. However, little is known whether autophagy could be modulated in brain and peripheral tissues by long-term moderate exercise. Here, we examined the effects on macroautophagy process of long-term moderate treadmill training (36 weeks) in adult rats both in brain (hippocampus and cerebral cortex) and peripheral tissues (skeletal muscle, liver and heart). We assessed mTOR activation and the autophagic proteins Beclin 1, p62, LC3B (LC3B-II/LC3B-I ratio) and the lysosomal protein LAMP1, as well as the ubiquitinated proteins. Our results showed in the cortex of exercised rats an inactivation of mTOR, greater autophagy flux (increased LC3-II/LC3-I ratio and reduced p62) besides increased LAMP1. Related with these effects a reduction in the ubiquitinated proteins was observed. No significant changes in the autophagic pathway were found either in hippocampus or in skeletal and cardiac muscle by exercise. Only in the liver of exercised rats mTOR phosphorylation and p62 levels increased, which could be related with beneficial metabolic effects in this organ induced by exercise. Thus, our findings suggest that long-term moderate exercise induces autophagy specifically in the cortex
Resumo:
The autophagic process is a lysosomal degradation pathway, which is activated during stress conditions, such as starvation or exercise. Regular exercise has beneficial effects on human health, including neuroprotection. However, the cellular mechanisms underlying these effects are incompletely understood. Endurance and a single bout of exercise induce autophagy not only in brain but also in peripheral tissues. However, little is known whether autophagy could be modulated in brain and peripheral tissues by long-term moderate exercise. Here, we examined the effects on macroautophagy process of long-term moderate treadmill training (36 weeks) in adult rats both in brain (hippocampus and cerebral cortex) and peripheral tissues (skeletal muscle, liver and heart). We assessed mTOR activation and the autophagic proteins Beclin 1, p62, LC3B (LC3B-II/LC3B-I ratio) and the lysosomal protein LAMP1, as well as the ubiquitinated proteins. Our results showed in the cortex of exercised rats an inactivation of mTOR, greater autophagy flux (increased LC3-II/LC3-I ratio and reduced p62) besides increased LAMP1. Related with these effects a reduction in the ubiquitinated proteins was observed. No significant changes in the autophagic pathway were found either in hippocampus or in skeletal and cardiac muscle by exercise. Only in the liver of exercised rats mTOR phosphorylation and p62 levels increased, which could be related with beneficial metabolic effects in this organ induced by exercise. Thus, our findings suggest that long-term moderate exercise induces autophagy specifically in the cortex
Resumo:
S'analitza la coautoria de la UPC amb autors vinculats a institucions acadèmiques dels Estats Units, per totes les àrees temàtiques i sense considerar límits cronològics o documentals.