52 resultados para Bridge design
Resumo:
The possibility of local elastic instabilities is considered in a first¿order structural phase transition, typically a thermoelastic martensitic transformation, with associated interfacial and volumic strain energy. They appear, for instance, as the result of shape change accommodation by simultaneous growth of different crystallographic variants. The treatment is phenomenological and deals with growth in both thermoelastic equilibrium and in nonequilibrium conditions produced by the elastic instability. Scaling of the transformed fraction curves against temperature is predicted only in the case of purely thermoelastic growth. The role of the transformation latent heat on the relaxation kinetics is also considered, and it is shown that it tends to increase the characteristic relaxation times as adiabatic conditions are approached, by keeping the system closer to a constant temperature. The analysis also reveals that the energy dissipated in the relaxation process has a double origin: release of elastic energy Wi and entropy production Si. The latter is shown to depend on both temperature rate and thermal conduction in the system.
Resumo:
A practical activity designed to introduce wavefront coding techniques as a method to extend the depth of field in optical systems is presented. The activity is suitable for advanced undergraduate students since it combines different topics in optical engineering such as optical system design, aberration theory, Fourier optics, and digital image processing. This paper provides the theoretical background and technical information for performing the experiment. The proposed activity requires students able to develop a wide range of skills since they are expected to deal with optical components, including spatial light modulators, and develop scripts to perform some calculations.
Resumo:
A method of making a multiple matched filter which allows the recognition of different characters in successive planes in simple conditions is proposed. The generation of the filter is based on recording on the same plate the Fourier transforms of the different patterns to be recognized, each of which is affected by different spherical phase factors because the patterns have been placed at different distances from the lens. This is proved by means of experiments with a triple filter which allows satisfactory recognition of three characters.
Resumo:
We describe the design, calibration, and performance of surface forces apparatus with the capability of illumination of the contact interface for spectroscopic investigation using optical techniques. The apparatus can be placed in the path of a Nd-YAG laser for studies of the linear response or the second harmonic and sum-frequency generation from a material confined between the two surfaces. In addition to the standard fringes of equal chromatic order technique, which we have digitized for accurate and fast analysis, the distance of separation can be measured with a fiber-optic interferometer during spectroscopic measurements (2 Å resolution and 10 ms response time). The sample approach is accomplished through application of a motor drive, piezoelectric actuator, or electromagnetic lever deflection for variable degrees of range, sensitivity, and response time. To demonstrate the operation of the instrument, the stepwise expulsion of discrete layers of octamethylcyclotetrasiloxane from the contact is shown. Lateral forces may also be studied by using piezoelectric bimorphs to induce and direct the motion of one surface.
Resumo:
We present a heuristic method for learning error correcting output codes matrices based on a hierarchical partition of the class space that maximizes a discriminative criterion. To achieve this goal, the optimal codeword separation is sacrificed in favor of a maximum class discrimination in the partitions. The creation of the hierarchical partition set is performed using a binary tree. As a result, a compact matrix with high discrimination power is obtained. Our method is validated using the UCI database and applied to a real problem, the classification of traffic sign images.
Resumo:
A common way to model multiclass classification problems is by means of Error-Correcting Output Codes (ECOCs). Given a multiclass problem, the ECOC technique designs a code word for each class, where each position of the code identifies the membership of the class for a given binary problem. A classification decision is obtained by assigning the label of the class with the closest code. One of the main requirements of the ECOC design is that the base classifier is capable of splitting each subgroup of classes from each binary problem. However, we cannot guarantee that a linear classifier model convex regions. Furthermore, nonlinear classifiers also fail to manage some type of surfaces. In this paper, we present a novel strategy to model multiclass classification problems using subclass information in the ECOC framework. Complex problems are solved by splitting the original set of classes into subclasses and embedding the binary problems in a problem-dependent ECOC design. Experimental results show that the proposed splitting procedure yields a better performance when the class overlap or the distribution of the training objects conceal the decision boundaries for the base classifier. The results are even more significant when one has a sufficiently large training size.