57 resultados para Borohydride oxidation reaction (BOR)
Resumo:
The oxidation of solutions of glucose with methylene-blue as a catalyst in basic media can induce hydrodynamic overturning instabilities, termed chemoconvection in recognition of their similarity to convective instabilities. The phenomenon is due to gluconic acid, the marginally dense product of the reaction, which gradually builds an unstable density profile. Experiments indicate that dominant pattern wavenumbers initially increase before gradually decreasing or can even oscillate for long times. Here, we perform a weakly nonlinear analysis for an established model of the system with simple kinetics, and show that the resulting amplitude equation is analogous to that obtained in convection with insulating walls. We show that the amplitude description predicts that dominant pattern wavenumbers should decrease in the long term, but does not reproduce the aforementioned increasing wavenumber behavior in the initial stages of pattern development. We hypothesize that this is due to horizontally homogeneous steady states not being attained before pattern onset. We show that the behavior can be explained using a combination of pseudo-steady-state linear and steady-state weakly nonlinear theories. The results obtained are in qualitative agreement with the analysis of experiments.
Resumo:
We consider an irreversible autocatalytic conversion reaction A+B->2A under subdiffusion described by continuous-time random walks. The reactants transformations take place independently of their motion and are described by constant rates. The analog of this reaction in the case of normal diffusion is described by the Fisher-Kolmogorov-Petrovskii-Piskunov equation leading to the existence of a nonzero minimal front propagation velocity, which is really attained by the front in its stable motion. We show that for subdiffusion, this minimal propagation velocity is zero, which suggests propagation failure.
Resumo:
Interfacial hydrodynamic instabilities arise in a range of chemical systems. One mechanism for instability is the occurrence of unstable density gradients due to the accumulation of reaction products. In this paper we conduct two-dimensional nonlinear numerical simulations for a member of this class of system: the methylene-blue¿glucose reaction. The result of these reactions is the oxidation of glucose to a relatively, but marginally, dense product, gluconic acid, that accumulates at oxygen permeable interfaces, such as the surface open to the atmosphere. The reaction is catalyzed by methylene-blue. We show that simulations help to disassemble the mechanisms responsible for the onset of instability and evolution of patterns, and we demonstrate that some of the results are remarkably consistent with experiments. We probe the impact of the upper oxygen boundary condition, for fixed flux, fixed concentration, or mixed boundary conditions, and find significant qualitative differences in solution behavior; structures either attract or repel one another depending on the boundary condition imposed. We suggest that measurement of the form of the boundary condition is possible via observation of oxygen penetration, and improved product yields may be obtained via proper control of boundary conditions in an engineering setting. We also investigate the dependence on parameters such as the Rayleigh number and depth. Finally, we find that pseudo-steady linear and weakly nonlinear techniques described elsewhere are useful tools for predicting the behavior of instabilities beyond their formal range of validity, as good agreement is obtained with the simulations.
Resumo:
Aquest treball fa una revisió de mesures experimentals i càlculs teòrics sobre la dinàmica de col·lisions i reaccions moleculars. Els experiments se centren en col·lisions, a energies intermèdies, que involucren sistemes del tipus ió-àtom i iómolècula, per les quals es mesuren seccions eficaces totals, estat a estat, així com aquelles que discerneixen les diferents contribucions del moment angular d'espín. Els resultats obtinguts s'interpreten satisfactòriament en termes d'acoblaments no adiabàtics entre els diferents estats electrònics dels sistemes col·lisionants. Els càlculs teòrics utilitzen la metodologia quasiclàssica, així com metodologies mecanoquàntiques recentment desenvolupades, tant aproximades com exactes. S'han obtingut resultats totalment convergits per sistemes tipus, mentre que s'han analitzat, de manera detallada i extensiva, les característiques dinàmiques de sistemes triatòmic, tetraatòmic i pentaatòmic.
Resumo:
The nanometer¿scale oxidation of Si(100) surfaces in air is performed with an atomic force microscope working in tapping mode. Applying a positive voltage to the sample with respect to the tip, two kinds of modifications are induced on the sample: grown silicon oxide mounds less than 5 nm high and mounds higher than 10 nm (which are assumed to be gold depositions). The threshold voltage necessary to produce the modification is studied as a function of the average tip¿to¿sample distance.
Resumo:
Oxalic and oxamic acids are the ultimate and more persistent by-products of the degradation of N-aromatics by electrochemical advanced oxidation processes (EAOPs). In this paper, the kinetics and oxidative paths of these acids have been studied for several EAOPs using a boron-doped diamond (BDD) anode and a stainless steel or an air-diffusion cathode. Anodic oxidation (AO-BDD) in the presence of Fe2+ (AO-BDD-Fe2+) and under UVA irradiation (AO-BDD-Fe2+-UVA), along with electro-Fenton (EF-BDD), was tested. The oxidation of both acids and their iron complexes on BDD was clarified by cyclic voltammetry. AO-BDD allowed the overall mineralization of oxalic acid, but oxamic acid was removed much more slowly. Each acid underwent a similar decay in AO-BDD-Fe2+ and EFBDD, as expected if its iron complexes were not attacked by hydroxyl radicals in the bulk. The faster and total mineralization of both acids was achieved in AO-BDD-Fe2+-UVA due to the high photoactivity of their Fe(III) complexes that were continuously regenerated by oxidation of their Fe(II) complexes. Oxamic acid always released a larger proportion of NH4 + than NO3- ion, as well as volatile NOx species. Both acids were independently oxidized at the anode in AO-BDD, but in AO-BDD-Fe2+-UVA oxamic acid was more slowlydegraded as its content decreased, without significant effect on oxalic acid decay. The increase in current density enhanced the oxidation power of the latter method, with loss of efficiency. High Fe2+ contents inhibited the oxidation of Fe(II) complexes by the competitive oxidation of Fe2+ to Fe3+. Low current densities and Fe2+ contents are preferable to remove more efficiently these acids by the most potent AO-BDD-Fe2+-UVA method.
Resumo:
Rigorous quantum dynamics calculations of reaction rates and initial state-selected reaction probabilities of polyatomic reactions can be efficiently performed within the quantum transition state concept employing flux correlation functions and wave packet propagation utilizing the multi-configurational time-dependent Hartree approach. Here, analytical formulas and a numerical scheme extending this approach to the calculation of state-to-state reaction probabilities are presented. The formulas derived facilitate the use of three different dividing surfaces: two dividing surfaces located in the product and reactant asymptotic region facilitate full state resolution while a third dividing surface placed in the transition state region can be used to define an additional flux operator. The eigenstates of the corresponding thermal flux operator then correspond to vibrational states of the activated complex. Transforming these states to reactant and product coordinates and propagating them into the respective asymptotic region, the full scattering matrix can be obtained. To illustrate the new approach, test calculations study the D + H2(ν, j) → HD(ν′, j′) + H reaction for J = 0.
Resumo:
The interaction between Hopf and Turing modes has been the subject of active research in recent years. We present here experimental evidence of the existence of mixed Turing-Hopf modes in a two-dimensional system. Using the photosensitive chlorine dioxide-iodine-malonic acid reaction (CDIMA) and external constant background illumination as a control parameter, standing spots oscillating in amplitude and with hexagonal ordering were observed. Numerical simulations in the Lengyel-Epstein model for the CDIMA reaction confirmed the results.
Resumo:
The oxidation of GaAs and AlxGa1−xAs targets by oxygen irradiation has been studied in detail. It was found that the oxidation process is characterized by the strong preferential oxidation of Al as compared to Ga, and of Ga as compared to As. This experimental observation, which has been accurately quantified by using x‐ray photoelectron spectroscopy, is connected to the different heats of formation of the corresponding oxides. The oxide grown by ion beam oxidation shows a strong depletion in As and relatively low oxidation of As as well. The depletion can be associated with the preferential sputtering of the As oxide in respect to other compounds whereas the low oxidation is due to the low heat of formation. In contrast Al is rapidly and fully oxidized, turning the outermost layer of the altered layer to a single Al2O3 overlayer, as observed by transmission electron microscopy. The radiation enhanced diffusion of oxygen and aluminum in the altered layer explains the large thickness of these altered layers and the formation of Al oxides on top of the layers. For the case of ion‐beam oxidation of GaAs a simulation program has been developed which describes adequately the various growth mechanisms experimentally observed
Resumo:
The aim of this study was to evaluate the tissue compatibility of a silorane-based resin system (FiltekTM Silorane) and a methacrylatebased nanoparticle resin (FiltekTM Supreme XT) after implantation in the subcutaneous connective tissue of isogenic mice. One hundred and thirty five male isogenic BALB/c mice were randomly assigned to 12 experimental and 3 control groups, according to the implanted material and the experimental period of 7, 21 and 63 days. At the end of each period, the animals were killed and the tubes with the surrounding tissues were removed and processed for microscopic analysis. Samples were subjected to a descriptive and a semi-quantitative analyses using a 4-point scoring system (0-3) to evaluate the collagen fiber formation and inflammatory infiltrate. Data were statistically analyzed using the Kruskal Wallis test (a=0.05). The results showed that there was no significant difference between the experimental and control groups considering the three evaluation periods (p>0.05). The silorane-based and the methacrylate-based nanoparticle resins presented similar tissue response to that of the empty tube (control group) after subcutaneous implantation in isogenic mice.
Resumo:
Strategies that enhance fat degradation or reduce caloricfood intake could be considered therapeutic interventions to reduce notonly obesity, but also its associated disorders. The enzyme carnitinepalmitoyltransferase 1 (CPT1) is the critical rate-determining regulatorof fatty acid oxidation (FAO) and might play a key role in increasingenergy expenditure and controlling food intake. Our group has shownthat mice overexpressing CPT1 in liver are protected from weight gain,the development of obesity and insulin resistance. Regarding foodintake control, we observed that the pharmacological inhibition ofCPT1 in rat hypothalamus decreased food intake and body weight.This suggests that modulation of CPT1 activity and the oxidation offatty acids in various tissues can be crucial for the potential treatmentof obesity and associated pathologies.
Resumo:
Strategies that enhance fat degradation or reduce caloricfood intake could be considered therapeutic interventions to reduce notonly obesity, but also its associated disorders. The enzyme carnitinepalmitoyltransferase 1 (CPT1) is the critical rate-determining regulatorof fatty acid oxidation (FAO) and might play a key role in increasingenergy expenditure and controlling food intake. Our group has shownthat mice overexpressing CPT1 in liver are protected from weight gain,the development of obesity and insulin resistance. Regarding foodintake control, we observed that the pharmacological inhibition ofCPT1 in rat hypothalamus decreased food intake and body weight.This suggests that modulation of CPT1 activity and the oxidation offatty acids in various tissues can be crucial for the potential treatmentof obesity and associated pathologies.