83 resultados para BLOCK POLYELECTROLYTE SOLUTIONS
Resumo:
It was shown by Weyl that the general static axisymmetric solution of the vacuum Einstein equations in four dimensions is given in terms of a single axisymmetric solution of the Laplace equation in three-dimensional flat space. Weyls construction is generalized here to arbitrary dimension D>~4. The general solution of the D-dimensional vacuum Einstein equations that admits D-2 orthogonal commuting non-null Killing vector fields is given either in terms of D-3 independent axisymmetric solutions of Laplaces equation in three-dimensional flat space or by D-4 independent solutions of Laplaces equation in two-dimensional flat space. Explicit examples of new solutions are given. These include a five-dimensional asymptotically flat black ring with an event horizon of topology S1S2 held in equilibrium by a conical singularity in the form of a disk.
Resumo:
We present a general class of solutions to Einstein's field equations with two spacelike commuting Killing vectors by assuming the separation of variables of the metric components. The solutions can be interpreted as inhomogeneous cosmological models. We show that the singularity structure of the solutions varies depending on the different particular choices of the parameters and metric functions. There exist solutions with a universal big-bang singularity, solutions with timelike singularities in the Weyl tensor only, solutions with singularities in both the Ricci and the Weyl tensors, and also singularity-free solutions. We prove that the singularity-free solutions have a well-defined cylindrical symmetry and that they are generalizations of other singularity-free solutions obtained recently.
Resumo:
We examine plane-symmetric cosmological solutions to Einstein's equations which can be generated by the "soliton" technique, using the homogeneous Bianchi solutions as seeds and arbitrary numbers of real or complex poles. In some circumstances, these solutions can be interpreted as "incipient" gravitational waves on the Bianchi background. At early times they look like nonlinear inhomogeneities propagating at nearly the speed of light ("gravisolitons"), while at late times they look like cosmological gravitational waves.
Resumo:
We discuss a multisoliton solution to Einsteins equations in vacuum. The solution is interpreted as many gravitational solitons propagating and colliding on a homogeneous cosmological background. Following a previous letter, we characterize the solitons by their localizability and by their peculiar properties under collisions. Furthermore, we define an associated frame-dependent velocity field which illustrates the solitonic character of these gravitational solitons in the classical sense.
Resumo:
Several problems in the theory of photon migration in a turbid medium suggest the utility of calculating solutions of the telegrapher¿s equation in the presence of traps. This paper contains two such solutions for the one-dimensional problem, the first being for a semi-infinite line terminated by a trap, and the second being for a finite line terminated by two traps. Because solutions to the telegrapher¿s equation represent an interpolation between wavelike and diffusive phenomena, they will exhibit discontinuities even in the presence of traps.
Resumo:
This reply adds a number of details to remarks by Foong and Kanno [preceding Comment, Phys. Rev. A 46, 5296 (1992)] on our paper [Phys. Rev. A 45, 2222 (1992)] regarding the discontinuities observed in the curves generated in that paper.
Resumo:
In this paper we study under which circumstances there exists a general change of gross variables that transforms any FokkerPlanck equation into another of the OrnsteinUhlenbeck class that, therefore, has an exact solution. We find that any FokkerPlanck equation will be exactly solvable by means of a change of gross variables if and only if the curvature tensor and the torsion tensor associated with the diffusion is zero and the transformed drift is linear. We apply our criteria to the Kubo and Gompertz models.
Resumo:
Generalized KerrSchild space-times for a perfect-fluid source are investigated. New Petrov type D perfect fluid solutions are obtained starting from conformally flat perfect-fluid metrics.
Resumo:
Petrov types D and II perfect-fluid solutions are obtained starting from conformally flat perfect-fluid metrics and by using a generalized KerrSchild ansatz. Most of the Petrov type D metrics obtained have the property that the velocity of the fluid does not lie in the two-space defined by the principal null directions of the Weyl tensor. The properties of the perfect-fluid sources are studied. Finally, a detailed analysis of a new class of spherically symmetric static perfect-fluid metrics is given.
Resumo:
Single-valued solutions for the case of two-sided market games without product differentiation, also known as Böhm-Bawerk horse market games, are analyzed. The nucleolus is proved to coincide with the tau-value, and is thus the midpoint of the core. Moreover a characterization of this setof games in terms of the assignment matrix is provided.
Resumo:
In the analysis of equilibrium policies in a di erential game, if agents have different time preference rates, the cooperative (Pareto optimum) solution obtained by applying the Pontryagin's Maximum Principle becomes time inconsistent. In this work we derive a set of dynamic programming equations (in discrete and continuous time) whose solutions are time consistent equilibrium rules for N-player cooperative di erential games in which agents di er in their instantaneous utility functions and also in their discount rates of time preference. The results are applied to the study of a cake-eating problem describing the management of a common property exhaustible natural resource. The extension of the results to a simple common property renewable natural resource model in in nite horizon is also discussed.