68 resultados para Automatic Speaker Recognition
Resumo:
Alzheimer's disease is the most prevalent form of progressive degenerative dementia; it has a high socio-economic impact in Western countries. Therefore it is one of the most active research areas today. Alzheimer's is sometimes diagnosed by excluding other dementias, and definitive confirmation is only obtained through a post-mortem study of the brain tissue of the patient. The work presented here is part of a larger study that aims to identify novel technologies and biomarkers for early Alzheimer's disease detection, and it focuses on evaluating the suitability of a new approach for early diagnosis of Alzheimer’s disease by non-invasive methods. The purpose is to examine, in a pilot study, the potential of applying Machine Learning algorithms to speech features obtained from suspected Alzheimer sufferers in order help diagnose this disease and determine its degree of severity. Two human capabilities relevant in communication have been analyzed for feature selection: Spontaneous Speech and Emotional Response. The experimental results obtained were very satisfactory and promising for the early diagnosis and classification of Alzheimer’s disease patients.
Resumo:
In this work we explore the multivariate empirical mode decomposition combined with a Neural Network classifier as technique for face recognition tasks. Images are simultaneously decomposed by means of EMD and then the distance between the modes of the image and the modes of the representative image of each class is calculated using three different distance measures. Then, a neural network is trained using 10- fold cross validation in order to derive a classifier. Preliminary results (over 98 % of classification rate) are satisfactory and will justify a deep investigation on how to apply mEMD for face recognition.
Resumo:
Alzheimer’s disease (AD) is the most prevalent form of progressive degenerative dementia and it has a high socio-economic impact in Western countries, therefore is one of the most active research areas today. Its diagnosis is sometimes made by excluding other dementias, and definitive confirmation must be done trough a post-mortem study of the brain tissue of the patient. The purpose of this paper is to contribute to im-provement of early diagnosis of AD and its degree of severity, from an automatic analysis performed by non-invasive intelligent methods. The methods selected in this case are Automatic Spontaneous Speech Analysis (ASSA) and Emotional Temperature (ET), that have the great advantage of being non invasive, low cost and without any side effects.
Resumo:
Although paraphrasing is the linguistic mechanism underlying many plagiarism cases, little attention has been paid to its analysis in the framework of automatic plagiarism detection. Therefore, state-of-the-art plagiarism detectors find it difficult to detect cases of paraphrase plagiarism. In this article, we analyse the relationship between paraphrasing and plagiarism, paying special attention to which paraphrase phenomena underlie acts of plagiarism and which of them are detected by plagiarism detection systems. With this aim in mind, we created the P4P corpus, a new resource which uses a paraphrase typology to annotate a subset of the PAN-PC-10 corpus for automatic plagiarism detection. The results of the Second International Competition on Plagiarism Detection were analysed in the light of this annotation. The presented experiments show that (i) more complex paraphrase phenomena and a high density of paraphrase mechanisms make plagiarism detection more difficult, (ii) lexical substitutions are the paraphrase mechanisms used the most when plagiarising, and (iii) paraphrase mechanisms tend to shorten the plagiarized text. For the first time, the paraphrase mechanisms behind plagiarism have been analysed, providing critical insights for the improvement of automatic plagiarism detection systems.
Resumo:
Peer-reviewed
Resumo:
The most adequate approach for benchmarking web accessibility is manual expert evaluation supplemented by automatic analysis tools. But manual evaluation has a high cost and is impractical to be applied on large websites. In reality, there is no choice but to rely on automated tools when reviewing large web sites for accessibility. The question is: to what extent the results from automatic evaluation of a web site and individual web pages can be used as an approximation for manual results? This paper presents the initial results of an investigation aimed at answering this question. He have performed both manual and automatic evaluations of the accessibility of web pages of two sites and we have compared the results. In our data set automatically retrieved results could most definitely be used as an approximation manual evaluation results.
Resumo:
This paper proposes to enrich RBMTdictionaries with Named Entities(NEs) automatically acquired fromWikipedia. The method is appliedto the Apertium English-Spanishsystem and its performance comparedto that of Apertium with and withouthandtagged NEs. The system withautomatic NEs outperforms the onewithout NEs, while results vary whencompared to a system with handtaggedNEs (results are comparable forSpanish to English but slightly worstfor English to Spanish). Apart fromthat, adding automatic NEs contributesto decreasing the amount of unknownterms by more than 10%.
Resumo:
El principal objectiu d’aquest projecte és aconseguir classificar diferents vídeos d’esports segons la seva categoria. Els cercadors de text creen un vocabulari segons el significat de les diferents paraules per tal de poder identificar un document. En aquest projecte es va fer el mateix però mitjançant paraules visuals. Per exemple, es van intentar englobar com a una única paraula les diferents rodes que apareixien en els cotxes de rally. A partir de la freqüència amb què apareixien les paraules dels diferents grups dins d’una imatge vàrem crear histogrames de vocabulari que ens permetien tenir una descripció de la imatge. Per classificar un vídeo es van utilitzar els histogrames que descrivien els seus fotogrames. Com que cada histograma es podia considerar un vector de valors enters vàrem optar per utilitzar una màquina classificadora de vectors: una Support vector machine o SVM
Resumo:
Alzheimer’s disease (AD) is the most prevalent form of progressive degenerative dementia and it has a high socio-economic impact in Western countries, therefore is one of the most active research areas today. Its diagnosis is sometimes made by excluding other dementias, and definitive confirmation must be done trough a post-mortem study of the brain tissue of the patient. The purpose of this paper is to contribute to improvement of early diagnosis of AD and its degree of severity, from an automatic analysis performed by non-invasive intelligent methods. The methods selected in this case are Automatic Spontaneous Speech Analysis (ASSA) and Emotional Temperature (ET), that have the great advantage of being non invasive, low cost and without any side effects.
Resumo:
The purpose of our project is to contribute to earlier diagnosis of AD and better estimates of its severity by using automatic analysis performed through new biomarkers extracted from non-invasive intelligent methods. The methods selected in this case are speech biomarkers oriented to Sponta-neous Speech and Emotional Response Analysis. Thus the main goal of the present work is feature search in Spontaneous Speech oriented to pre-clinical evaluation for the definition of test for AD diagnosis by One-class classifier. One-class classifi-cation problem differs from multi-class classifier in one essen-tial aspect. In one-class classification it is assumed that only information of one of the classes, the target class, is available. In this work we explore the problem of imbalanced datasets that is particularly crucial in applications where the goal is to maximize recognition of the minority class as in medical diag-nosis. The use of information about outlier and Fractal Dimen-sion features improves the system performance.
Resumo:
The design and synthesis of two Janus-type heterocycles with the capacity to simultaneously recognize guanine and uracyl in G-U mismatched pairs through complementary hydrogen bond pairing is described. Both compounds were conveniently functionalized with a carboxylic function and efficiently attached to a tripeptide sequence by using solid-phase methodologies. Ligands based on the derivatization of such Janus compounds with a small aminoglycoside, neamine, and its guanidinylated analogue have been synthesized, and their interaction with Tau RNA has been investigated by using several biophysical techniques, including UV-monitored melting curves, fluorescence titration experiments, and 1H NMR. The overall results indicated that Janus-neamine/guanidinoneamine showed some preference for the +3 mutated RNA sequence associated with the development of some tauopathies, although preliminary NMR studies have not confirmed binding to G-U pairs. Moreover, a good correlation has been found between the RNA binding affinity of such Janus-containing ligands and their ability to stabilize this secondary structure upon complexation.
Resumo:
The recognition of prior experiential learning (RPEL) involves the assessment ofskills and knowledge acquired by an individual through previous experience, which isnot necessarily related to an academic context. RPEL practices are far from generalisedin higher education, and there is a lack of specific guidelines on how to implement RPLprograms in particular settings, such as management education or online programs. TheRPEL pilot program developed in a Spanish virtual university is used throughout thearticle as the basis for further reflection on the design and implementation of RPEL inonline postgraduate education in the business field. The role of competences as a centraltheoretical foundation for RPEL is explained, and the context and characteristics of theRPEL program described. Special attention is paid to the key elements of the program¿sdesign and to the practical aspects of its implementation. The results of the program areassessed and general conclusions and suggestions for further research are discussed.
Resumo:
In this paper, we propose a new supervised linearfeature extraction technique for multiclass classification problemsthat is specially suited to the nearest neighbor classifier (NN).The problem of finding the optimal linear projection matrix isdefined as a classification problem and the Adaboost algorithmis used to compute it in an iterative way. This strategy allowsthe introduction of a multitask learning (MTL) criterion in themethod and results in a solution that makes no assumptions aboutthe data distribution and that is specially appropriated to solvethe small sample size problem. The performance of the methodis illustrated by an application to the face recognition problem.The experiments show that the representation obtained followingthe multitask approach improves the classic feature extractionalgorithms when using the NN classifier, especially when we havea few examples from each class