80 resultados para Auditory steady-state response
Resumo:
We consider a general class of non-Markovian processes defined by stochastic differential equations with Ornstein-Uhlenbeck noise. We present a general formalism to evaluate relaxation times associated with correlation functions in the steady state. This formalism is a generalization of a previous approach for Markovian processes. The theoretical results are shown to be in satisfactory agreement both with experimental data for a cubic bistable system and also with a computer simulation of the Stratonovich model. We comment on the dynamical role of the non-Markovianicity in different situations.
Resumo:
We consider systems described by nonlinear stochastic differential equations with multiplicative noise. We study the relaxation time of the steady-state correlation function as a function of noise parameters. We consider the white- and nonwhite-noise case for a prototype model for which numerical data are available. We discuss the validity of analytical approximation schemes. For the white-noise case we discuss the results of a projector-operator technique. This discussion allows us to give a generalization of the method to the non-white-noise case. Within this generalization, we account for the growth of the relaxation time as a function of the correlation time of the noise. This behavior is traced back to the existence of a non-Markovian term in the equation for the correlation function.
Resumo:
We study the dynamics of Staffman-Taylor fingering in terms of topological defects of the flow field. The defects are created and/or annihilated at the interface. The route towards the single-finger steady state is characterized by a detailed mechanism for defect annihilation. For small viscosity contrast this mechanism is impeded, and creation of new defects leads the system away from a single-finger solution. Strong evidence for a drastic reduction of the basin of attraction of the Saffman-Taylor finger is presented.
Resumo:
We study the singular effects of vanishingly small surface tension on the dynamics of finger competition in the Saffman-Taylor problem, using the asymptotic techniques described by Tanveer [Philos. Trans. R. Soc. London, Ser. A 343, 155 (1993)] and Siegel and Tanveer [Phys. Rev. Lett. 76, 419 (1996)], as well as direct numerical computation, following the numerical scheme of Hou, Lowengrub, and Shelley [J. Comput. Phys. 114, 312 (1994)]. We demonstrate the dramatic effects of small surface tension on the late time evolution of two-finger configurations with respect to exact (nonsingular) zero-surface-tension solutions. The effect is present even when the relevant zero-surface-tension solution has asymptotic behavior consistent with selection theory. Such singular effects, therefore, cannot be traced back to steady state selection theory, and imply a drastic global change in the structure of phase-space flow. They can be interpreted in the framework of a recently introduced dynamical solvability scenario according to which surface tension unfolds the structurally unstable flow, restoring the hyperbolicity of multifinger fixed points.
Resumo:
A one-sided phase-field model is proposed to study the dynamics of unstable interfaces of Hele-Shaw flows in the high viscosity contrast regime. The corresponding macroscopic equations are obtained by means of an asymptotic expansion from the phase-field model. Numerical integrations of the phase-field model in a rectangular Hele-Shaw cell reproduce finger competition with the final evolution to a steady-state finger.
Resumo:
A two-dimensional reaction-diffusion front which propagates in a modulated medium is studied. The modulation consists of a spatial variation of the local front velocity in the transverse direction to that of the front propagation. We study analytically and numerically the final steady-state velocity and shape of the front, resulting from a nontrivial interplay between the local curvature effects and the global competition process between different maxima of the control parameter. The transient dynamics of the process is also studied numerically and analytically by means of singular perturbation techniques.
Resumo:
The propagation of an initially planar front is studied within the framework of the photosensitive Belousov-Zhabotinsky reaction modulated by a smooth spatial variation of the local front velocity in the direction perpendicular to front propagation. Under this modulation, the wave front develops several fingers corresponding to the local maxima of the modulation function. After a transient, the wave front achieves a stationary shape that does not necessarily coincide with the one externally imposed by the modulation. Theoretical predictions for the selection criteria of fingers and steady-state velocity are experimentally validated.
Resumo:
A Brownian pump of particles powered by a stochastic flashing ratchet mechanism is studied. The pumping device is embedded in a finite region and bounded by particle reservoirs. In the steady state, we exactly calculate the spatial density profile, the concentration ratio between both reservoirs and the particle flux. We propose a simulation framework for the consistent evaluation of such observable quantities.
Resumo:
We study the effects of time and space correlations of an external additive colored noise on the steady-state behavior of a time-dependent Ginzburg-Landau model. Simulations show the existence of nonequilibrium phase transitions controlled by both the correlation time and length of the noise. A Fokker-Planck equation and the steady probability density of the process are obtained by means of a theoretical approximation.
Resumo:
A very simple model of a classical particle in a heat bath under the influence of external noise is studied. By means of a suitable hypothesis, the heat bath is reduced to an internal colored noise (OrnsteinUhlenbeck noise). In a second step, an external noise is coupled to the bath. The steady state probability distributions are obtained.
Resumo:
We perform a three-dimensional study of steady state viscous fingers that develop in linear channels. By means of a three-dimensional lattice-Boltzmann scheme that mimics the full macroscopic equations of motion of the fluid momentum and order parameter, we study the effect of the thickness of the channel in two cases. First, for total displacement of the fluids in the channel thickness direction, we find that the steady state finger is effectively two-dimensional and that previous two-dimensional results can be recovered by taking into account the effect of a curved meniscus across the channel thickness as a contribution to surface stresses. Second, when a thin film develops in the channel thickness direction, the finger narrows with increasing channel aspect ratio in agreement with experimental results. The effect of the thin film renders the problem three-dimensional and results deviate from the two-dimensional prediction.
Resumo:
We study the forced displacement of a fluid-fluid interface in a three-dimensional channel formed by two parallel solid plates. Using a lattice-Boltzmann method, we study situations in which a slip velocity arises from diffusion effects near the contact line. The difference between the slip and channel velocities determines whether the interface advances as a meniscus or a thin film of fluid is left adhered to the plates. We find that this effect is controlled by the capillary and Péclet numbers. We estimate the crossover from a meniscus to a thin film and find good agreement with numerical results. The penetration regime is examined in the steady state. We find that the occupation fraction of the advancing finger relative to the channel thickness is controlled by the capillary number and the viscosity contrast between the fluids. For high viscosity contrast, lattice-Boltzmann results agree with previous results. For zero viscosity contrast, we observe remarkably narrow fingers. The shape of the finger is found to be universal.
Resumo:
We study the forced displacement of a thin film of fluid in contact with vertical and inclined substrates of different wetting properties, that range from hydrophilic to hydrophobic, using the lattice-Boltzmann method. We study the stability and pattern formation of the contact line in the hydrophilic and superhydrophobic regimes, which correspond to wedge-shaped and nose-shaped fronts, respectively. We find that contact lines are considerably more stable for hydrophilic substrates and small inclination angles. The qualitative behavior of the front in the linear regime remains independent of the wetting properties of the substrate as a single dispersion relation describes the stability of both wedges and noses. Nonlinear patterns show a clear dependence on wetting properties and substrate inclination angle. The effect is quantified in terms of the pattern growth rate, which vanishes for the sawtooth pattern and is finite for the finger pattern. Sawtooth shaped patterns are observed for hydrophilic substrates and low inclination angles, while finger-shaped patterns arise for hydrophobic substrates and large inclination angles. Finger dynamics show a transient in which neighboring fingers interact, followed by a steady state where each finger grows independently.
Resumo:
We study steady-state correlation functions of nonlinear stochastic processes driven by external colored noise. We present a methodology that provides explicit expressions of correlation functions approximating simultaneously short- and long-time regimes. The non-Markov nature is reduced to an effective Markovian formulation, and the nonlinearities are treated systematically by means of double expansions in high and low frequencies. We also derive some exact expressions for the coefficients of these expansions for arbitrary noise by means of a generalization of projection-operator techniques.
Resumo:
A controlled perturbation is introduced into the Saffman-Taylor flow problem by adding a gradient to the gap of a Hele-Shaw cell. The stability of the single-finger steady state was found to be strongly affected by such a perturbation. Compared with patterns in a standard Hele-Shaw cell, the single Saffman-Taylor finger was stabilized or destabilized according to the sign of the gap gradient. While a linear stability analysis shows that this perturbation should have a negligible effect on the early-stage pattern formation, the experimental data indicate that the characteristic length for the initial breakup of a flat interface has been changed by the perturbation.