133 resultados para Astronomy, Arab


Relevância:

10.00% 10.00%

Publicador:

Resumo:

An inflating brane world can be created from ``nothing'' together with its anti-de Sitter (AdS) bulk. The resulting space-time has compact spatial sections bounded by the brane. During inflation, the continuum of KK modes is separated from the massless zero mode by the gap m=(3/2)H, where H is the Hubble rate. We consider the analogue of the Nariai solution and argue that it describes the pair production of ``black cigars'' attached to the inflating brane. In the case when the size of the instantons is much larger than the AdS radius, the 5-dimensional action agrees with the 4-dimensional one. Hence, the 5D and 4D gravitational entropies are the same in this limit. We also consider thermal instantons with an AdS black hole in the bulk. These may be interpreted as describing the creation of a hot universe from nothing or the production of AdS black holes in the vicinity of a pre-existing inflating brane world. The Lorentzian evolution of the brane world after creation is briefly discussed. An additional ``integration constant'' in the Friedmann equation-accompanying a term which dilutes like radiation-describes the tidal force in the fifth direction and arises from the mass of a spherical object inside the bulk. In general, this could be a 5-dimensional black hole or a ``parallel'' brane world of negative tension concentrical with our brane-world. In the case of thermal solutions, and in the spirit of the AdS/CFT correspondence, one may attribute the additional term to thermal radiation in the boundary theory. Then, for temperatures well below the AdS scale, the entropy of this radiation agrees with the entropy of the black hole in the AdS bulk.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We obtain new stringent constraints on a light spinless particle f coupled only to photons at low energies, considering its effects on the extragalactic photon background, the black-body spectrum of the cosmic microwave background radiation and the cosmological abundance of deuterium.

Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Resumo:

ty that low-energy effective field theory could be sufficient to understand the microscopic degrees of freedom underlying black hole entropy. We propose a qualitative physical picture in which black hole entropy refers to a space of quasicoherent states of infalling matter, together with its gravitational field. We stress that this scenario might provide a low-energy explanation of both the black hole entropy and the information puzzle.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An analysis of cosmic string breaking with the formation of black holes attached to the ends reveals a remarkable feature: the black holes can be correlated or uncorrelated. We find that, as a consequence, the number-of-states enhancement factor in the action governing the formation of uncorrelated black holes is twice the one for a correlated pair. We argue that when an uncorrelated pair forms at the ends of the string, the physics involved is more analogous to thermal nucleation than to particle-antiparticle creation. Also, we analyze the process of intercommuting strings induced by black hole annihilation and merging. Finally, we discuss the consequences for grand unified strings. The process whereby uncorrelated black holes are formed yields a rate which significantly improves over those previously considered, but still not enough to modify string cosmology. 1995 The American Physical Society.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The recently proposed correspondence principle of Horowitz and Polchinski provides a concrete means to relate (among others) black holes with electric Neveu-SchwarzNeveu-Schwarz charges to fundamental strings and correctly match their entropies. We further test this correspondence by examining the greybody factors in the absorption rates of neutral, minimally coupled scalars by a near extremal black hole. Perhaps surprisingly, the results disagree in general with the absorption by weakly coupled strings. Though this does not disprove the correspondence, it indicates that it might not be simple in this region of the black hole parameter space.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

It has been argued that a black hole horizon can support the long-range fields of a Nielsen-Olesen string and that one can think of such a vortex as black hole "hair." In this paper, we examine the properties of an Abelian Higgs vortex in the presence of a charged black hole as we allow the hole to approach extremality. Using both analytical and numerical techniques, we show that the magnetic field lines (as well as the scalar field) of the vortex are completely expelled from the black hole in the extreme limit. This was to be expected, since extreme black holes in Einstein-Maxwell theory are known to exhibit such a "Meissner effect" in general. This would seem to imply that a vortex does not want to be attached to an extreme black hole. We calculate the total energy of the vortex fields in the presence of an extreme black hole. When the hole is small relative to the size of the vortex, it is energetically favored for the hole to remain inside the vortex region, contrary to the intuition that the hole should be expelled. However, as we allow the extreme horizon radius to become very large compared to the radius of the vortex, we do find evidence of an instability. This proves that it is energetically unfavorable for a thin vortex to interact with a large extreme black hole. This would seem to dispel the notion that a black hole can support "long" Abelian Higgs hair in the extreme limit. We show that these considerations do not go through in the near-extreme limit. Finally, we discuss the implications for strings that end at black holes, as in the processes where a string snaps by nucleating black holes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In Einstein-Maxwell theory, magnetic flux lines are "expelled" from a black hole as extremality is approached, in the sense that the component of the field strength normal to the horizon goes to zero. Thus, extremal black holes are found to exhibit the sort of ¿Meissner effect¿ which is characteristic of superconducting media. We review some of the evidence for this effect and present new evidence for it using recently found black hole solutions in string theory and Kaluza-Klein theory. We also present some new solutions, which arise naturally in string theory, which are non-superconducting extremal black holes. We present a nice geometrical interpretation of these effects derived by looking carefully at the higher dimensional configurations from which the lower dimensional black hole solutions are obtained. We show that other extremal solitonic objects in string theory (such as p-branes) can also display superconducting properties. In particular, we argue that the relativistic London equation will hold on the world volume of ¿light¿ superconducting p-branes (which are embedded in flat space), and that minimally coupled zero modes will propagate in the adS factor of the near-horizon geometries of "heavy," or gravitating, superconducting p-branes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

It has been claimed that extreme black holes exhibit a phenomenon of flux expulsion for Abelian Higgs vortices, irrespective of the relative width of the vortex to the black hole. Recent work by two of the authors showed a subtlety in the treatment of the event horizon, which cast doubt on this claim. We analyze in detail the vortexextreme black hole system, showing that, while flux expulsion can occur, it does not do so in all cases. We give analytic proofs for both expulsion and penetration of flux, in each case deriving a bound for that behavior. We also present extensive numerical work backing up, and refining, these claims, and showing in detail how a vortex can end on a black hole in all situations. We also calculate the back reaction of the vortex on the geometry, and comment on the more general vortexblack hole system.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We compute the properties of a class of charged black holes in antide Sitter space-time, in diverse dimensions. These black holes are solutions of consistent Einstein-Maxwell truncations of gauged supergravities, which are shown to arise from the inclusion of rotation in the transverse space. We uncover rich thermodynamic phase structures for these systems, which display classic critical phenomena, including structures isomorphic to the van der WaalsMaxwell liquid-gas system. In that case, the phases are controlled by the universal cusp and swallowtail shapes familiar from catastrophe theory. All of the thermodynamics is consistent with field theory interpretations via holography, where the dual field theories can sometimes be found on the world volumes of coincident rotating branes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

rg model with A3 potential. The holographically dual field theories provide the description of the microscopic degrees of freedom which underlie all of the thermodynamics, as can be seen by examining the form of the microscopic fluctuations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We present and analyze exact solutions of the Einstein-Maxwell and Einstein-Maxwell-dilaton equations that describe static pairs of oppositely charged extremal black holes, i.e., black diholes. The holes are suspended in equilibrium in an external magnetic field, or held apart by cosmic strings. We comment as well on the relation of these solutions to brane-antibrane configurations in string and M theory.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

If there are large extra dimensions and the fundamental Planck scale is at the TeV scale, then the question arises of whether ultrahigh energy cosmic rays might probe them. We study the neutrino-nucleon cross section in these models. The elastic forward scattering is analyzed in some detail, hoping to clarify earlier discussions. We also estimate the black hole production rate. We study energy loss from graviton mediated interactions and conclude that they cannot explain the cosmic ray events above the GZK energy limit. However, these interactions could start horizontal air showers with characteristic profile and at a rate higher than in the standard model.