52 resultados para Anisosmotic extracellular regulation
Resumo:
The repair process of damaged tissue involves the coordinated activities of several cell types in response to local and systemic signals. Following acute tissue injury, infiltrating inflammatory cells and resident stem cells orchestrate their activities to restore tissue homeostasis. However, during chronic tissue damage, such as in muscular dystrophies, the inflammatory-cell infiltration and fibroblast activation persists, while the reparative capacity of stem cells (satellite cells) is attenuated. Abnormal dystrophic muscle repair and its end stage, fibrosis, represent the final common pathway of virtually all chronic neurodegenerative muscular diseases. As our understanding of the pathogenesis of muscle fibrosis has progressed, it has become evident that the muscle provides a useful model for the regulation of tissue repair by the local microenvironment, showing interplay among muscle-specific stem cells, inflammatory cells, fibroblasts and extracellular matrix components of the mammalian wound-healing response. This article reviews the emerging findings of the mechanisms that underlie normal versus aberrant muscle-tissue repair.
Resumo:
Class I alcohol dehydrogenases (ADH1s) are the rate-limiting enzymes for ethanol and vitamin A (retinol) metabolism in the liver . Because previous studies have shown that human ADH1 enzymes may participate in bile acid metabolism, we investigated whether the bile acid-activated nuclear receptor farnesoid X receptor (FXR) regulates ADH1 genes. In human hepatocytes, both the endogenous FXR ligand chenodeoxycholic acid and synthetic FXR-specific agonist GW4064 increased ADH1 mRNA, protein, and activity. Moreover, overexpression of a constitutively active form of FXR induced ADH1A and ADH1B expression, whereas silencing of FXR abolished the effects of FXR agonists on ADH1 expression and activity. Transient transfection studies and electrophoretic mobility shift assays revealed functional FXR response elements in the ADH1A and ADH1B proximal promoters, thus indicating that both genes are direct targets of FXR. These findings provide the first evidence for direct connection of bile acid signaling and alcohol metabolism.
Resumo:
Bone morphogenetic proteins (Bmps) regulate the expression of the proneural gene Atoh1 and the generation of hair cells in the developing inner ear. The present work explored the role of Inhibitor of Differentiation genes (Id1-3) in this process. The results show that Id genes are expressed in the prosensory domains of the otic vesicle, along with Bmp4 and Bmp7. Those domains exhibit high levels of the phosphorylated form of Bmp-responding R-Smads (P-Smad1,5,8), and of Bmp-dependent Smad transcriptional activity as shown by the BRE-tk-EGFP reporter. Increased Bmp signaling induces the expression of Id1-3 along with the inhibition of Atoh1. Conversely, the Bmp antagonist Noggin or the Bmp-receptor inhibitor Dorsomorphin elicit opposite effects, indicating that Bmp signaling is necessary for Id expression and Atoh1 regulation in the otocyst. The forced expression of Id3 is sufficient to reduce Atoh1 expression and to prevent the expression of hair cell differentiation markers. Together, these results suggest that Ids are part of the machinery that mediates the regulation of hair cell differentiation exerted by Bmps. In agreement with that, during hair cell differentiation Bmp4 expression, P-Smad1,5,8 levels and Id expression are downregulated from hair cells. However, Ids are also downregulated from the supporting cells which contrarily to hair cells exhibit high levels of Bmp4 expression, P-Smad1,5,8, and BRE-tk-EGFP activity, suggesting that in these cells Ids escape from Bmp/Smad signaling. The differential regulation of Ids in time and space may underlie the multiple functions of Bmp signaling during sensory organ development.
Resumo:
Neuropathic pain is a clinical manifestation of nerve injury difficult to treat even with potent analgesic compounds. Here, we used different lines of genetically modified mice to clarify the role played by CB2 cannabinoid receptors in the regulation of the central immune responses leading to the development of neuropathic pain. CB2 knock-out mice and wild-type littermates were exposed to sciatic nerve injury, and both genotypes developed a similar hyperalgesia and allodynia in the ipsilateral paw. Most strikingly, knock-outs also developed a contralateral mirror image pain, associated with an enhanced microglial and astrocytic expression in the contralateral spinal horn. In agreement, hyperalgesia, allodynia, and microglial and astrocytic activation induced by sciatic nerve injury were attenuated in transgenic mice overexpressing CB2 receptors. These results demonstrate the crucial role of CB2 cannabinoid receptor in modulating glial activation in response to nerve injury. The enhanced manifestations of neuropathic pain were replicated in irradiated wild-type mice reconstituted with bone marrow cells from CB2 knock-outs, thus demonstrating the implication of the CB2 receptor expressed in hematopoietic cells in the development of neuropathic pain at the spinal cord.
Resumo:
Previous studies indicate that 3,4-methylenedioxy-methamphetamine (MDMA, ecstasy) can induce heteromeric nicotinic acetylcholine receptor (nAChR, mainly of α4β2 subtype) up-regulation. In this study we treated Sprague-Dawley rats twice-daily for 10 days with either saline or MDMA (7 mg/kg) and killed them on day 11 to perform [125I]epibatidine binding autoradiograms on serial coronal slices. Results showed significant increases in nAChR density in the substantia nigra, ventral tegmental area, nucleus accumbens, olfactory tubercle, anterior caudate-putamen, somatosensory cortex, motor cortex, auditory cortex, retrosplenial cortex, laterodorsal thalamus nuclei, amygdala, postsubiculum and pontine nuclei. These increases ranged from 3% (retrosplenial cortex) to 30 and 33% (amygdala and substantia nigra). No increased α4 subunit immunoreactivity was found in up-regulated areas compared with saline-treated rats, suggesting a post-translational mechanism as occurs with nicotine. The percentage of up-regulation correlated positively with the density of serotonin transporters, according to the serotonergic profile of MDMA. The heteromeric nAChR increase in concrete areas could account, at least in part, for the reinforcing, sensitizing and psychiatric disorders observed after long-term treatment with MDMA.
Resumo:
Previous studies indicate that 3,4-methylenedioxy-methamphetamine (MDMA, ecstasy) can induce heteromeric nicotinic acetylcholine receptor (nAChR, mainly of α4β2 subtype) up-regulation. In this study we treated Sprague-Dawley rats twice-daily for 10 days with either saline or MDMA (7 mg/kg) and killed them on day 11 to perform [125I]epibatidine binding autoradiograms on serial coronal slices. Results showed significant increases in nAChR density in the substantia nigra, ventral tegmental area, nucleus accumbens, olfactory tubercle, anterior caudate-putamen, somatosensory cortex, motor cortex, auditory cortex, retrosplenial cortex, laterodorsal thalamus nuclei, amygdala, postsubiculum and pontine nuclei. These increases ranged from 3% (retrosplenial cortex) to 30 and 33% (amygdala and substantia nigra). No increased α4 subunit immunoreactivity was found in up-regulated areas compared with saline-treated rats, suggesting a post-translational mechanism as occurs with nicotine. The percentage of up-regulation correlated positively with the density of serotonin transporters, according to the serotonergic profile of MDMA. The heteromeric nAChR increase in concrete areas could account, at least in part, for the reinforcing, sensitizing and psychiatric disorders observed after long-term treatment with MDMA.
Resumo:
Previous studies indicate that 3,4-methylenedioxy-methamphetamine (MDMA, ecstasy) can induce heteromeric nicotinic acetylcholine receptor (nAChR, mainly of α4β2 subtype) up-regulation. In this study we treated Sprague-Dawley rats twice-daily for 10 days with either saline or MDMA (7 mg/kg) and killed them on day 11 to perform [125I]epibatidine binding autoradiograms on serial coronal slices. Results showed significant increases in nAChR density in the substantia nigra, ventral tegmental area, nucleus accumbens, olfactory tubercle, anterior caudate-putamen, somatosensory cortex, motor cortex, auditory cortex, retrosplenial cortex, laterodorsal thalamus nuclei, amygdala, postsubiculum and pontine nuclei. These increases ranged from 3% (retrosplenial cortex) to 30 and 33% (amygdala and substantia nigra). No increased α4 subunit immunoreactivity was found in up-regulated areas compared with saline-treated rats, suggesting a post-translational mechanism as occurs with nicotine. The percentage of up-regulation correlated positively with the density of serotonin transporters, according to the serotonergic profile of MDMA. The heteromeric nAChR increase in concrete areas could account, at least in part, for the reinforcing, sensitizing and psychiatric disorders observed after long-term treatment with MDMA.