54 resultados para Animal-sediment Relationships
Resumo:
Chemical perception is considered one of the first senses used as a communication system between living organisms. Such communication is based on the emission of signals between a sender and a receiver; if the communication is chemical, these signals are called pheromones. These signals have evolved via natural selection through a mechanism known as ritualization, which converts cues (which are not adapted to communication and which the receiver picks up regardless of the interests of the sender) into signals (information that the sender transmits as an adaptative response to its previously developed perception of the receiver). When communication has evolved between actors (sender and receiver) with common interests, the honesty of the signal is taken for granted, since both want the same thing (i.e., there is no reason to deceive). If the actors have conflicting interests, however, then the possibility of deception seeps into the possible array of adaptations. This can be observed in the case of communicative mimicry. However, in other situations natural selection imposes conditions that screen the possible signals, allowing only those that meet the requirement of honesty to stabilize. These include indices and added-cost signals. The emission of pheromones plays a variety of roles in the life processes of living beings. It facilitates encounters between individuals of the same species and is heavily involved in the mechanisms of recognition of relatives. It also fosters behaviours such as altruism (cooperation between individuals that share a percentage of their genetic inheritance). In many species, including humans, chemical communication works behind the scenes to guide the choice of a sexual partner.
Resumo:
Fire is a major agent involved in landscape transformation and an indirect cause of changes in species composition. Responses to fire may vary greatly depending on life histories and functional traits of species. We have examined the taxonomic and functional responses to fire of eight taxonomic animal groups displaying a gradient of dietary and mobility patterns: Gastropoda, Heteroptera, Formicidae, Coleoptera, Araneae, Orthoptera, Reptilia and Aves. The fieldwork was conducted in a Mediterranean protected area on 3 sites (one unburnt and two burnt with different postfire management practices) with five replicates per site. We collected information from 4606 specimens from 274 animal species. Similarity in species composition and abundance between areas was measured by the Bray-Curtis index and ANOSIM, and comparisons between animal and plant responses by Mantel tests. We analyze whether groups with the highest percentage of omnivorous species, these species being more generalist in their dietary habits, show weak responses to fire (i.e. more similarity between burnt and unburnt areas), and independent responses to changes in vegetation. We also explore how mobility, i.e. dispersal ability, influences responses to fire. Our results demonstrate that differences in species composition and abundance between burnt and unburnt areas differed among groups. We found a tendency towards presenting lower differences between areas for groups with higher percentages of omnivorous species. Moreover, taxa with a higher percentage of omnivorous species had significantly more independent responses of changes in vegetation. High- (e.g. Aves) and low-mobility (e.g. Gastropoda) groups had the strongest responses to fire (higher R scores of the ANOSIM); however, we failed to find a significant general pattern with all the groups according to their mobility. Our results partially support the idea that functional traits underlie the response of organisms to environmental changes caused by fire.
Resumo:
Des de la publicació de la Llei de Benestar Animal RD 1135/ 2002, de 31 d’octubre que regula els tres aspectes clau de la producció porcina‐ sistemes d’estabulació i construccions permeses; formació obligatòria dels ramaders i maneig dels animals‐ totes les granges de nova construcció han estat projectades seguint els seus preceptes. Mentre que les granges existents han hagut d’adaptar‐hi les seves instal∙lacions sota amenaça de tancament si no es complien els requisits. L’objectiu d’aquest treball ha estat l’elaboració de l’estudi tècnic‐ econòmic per a l’adaptació a la Llei de Benestar Animal d’una explotació porcina de la comarca d’Osona. Després d’avaluar la situació inicial de les instal∙lacions, establir les línies de previsió de creixement i analitzar els avantatges i inconvenients de cada sistema i model, s’opta pel sistema d’alimentació electrònic model Nedap en grup dinàmic de truges sobre sòl amb jaç de palla. Una decisió no massa extesa en granges del sud d’Europa on se sol preferir l’slat de formigó i/o superfície pavimentada, però imprescindible perquè aquesta explotació pogués aconseguir una millor gestió de les dejeccions ramaderes i assegurar una millora agronòmica de les terres de conreu. El treball conclou amb el seguiment del desenvolupament de l’alternativa escollida i una valoració dels canvis derivats de l’adaptació al Benestar Animal després del primer any i mig en ús. Les millores obtingudes en termes de maneig, funcionament de la granja, salut dels animals i índex productius són remarcables. D’una banda, cal destacar el fet de tenir un nombre de coixeres molt menor respecte les granges amb superfície dura, així com la facilitat i rapidesa en els parts degut al benestar. De l’altra,la reducció del volum de purí, l’increment de la fracció sòlida i la disponibilitat de compost per al camp. Per això, no és exagerat observar el jaç amb palla com una de les solucions més adequades i equilibrades per aquesta explotació que combina boví, porcí i terra per a la producció de cultius.
Resumo:
Typical Talaromyces ascomata were observed on dry Quercus suber leaf litter amongst the characteristic synnemata of Penicillium aureocephalum, and they appear to represent the sexual state of the latter species. The species is a synonym of the older Lasioderma flavovirens, and we propose the new combination Talaromyces flavovirens. Lectotype and epitype specimens are designated for this name. The defining characters of the asexual state include yellow, short-stalked, mycetozoan-like synnemata with an unusual, almost closed terminal head of penicillate conidiophores intermixed with sinuous hyphae, and dark green conidia. Ascomata could not be induced in culture, but PCR amplifications of mating-type genes indicate the species is heterothallic. In nature, ascocarp initials appear to be antheridia coiled around clavate ascogonia, similar to those of T. flavus, and the thick-walled, spiny ascospores are also similar to those of T. flavus. ITS barcodes and β-tubulin sequences place T. flavovirens in a clade with T. apiculatus, T. flavus, T. funiculosus, T. galapagensis, T. pinophilus, T. macrosporus, and seven other species.
Resumo:
Peer-reviewed
Resumo:
Peer-reviewed
Resumo:
Marine microorganisms, including Aeromonas, are a source of compounds for drug development that have generated great expectations in the last decades. Aeromonas infections produce septicaemia, and ulcerative and haemorrhagic diseases in fish. Among the pathogenic factors associated with Aeromonas, the lipopolysaccharides (LPS), a surface glyconconjugate unique to Gram-negative bacteria consisting of lipid A (lipid anchor of the molecule), core oligosaccharide and O-specific polysaccharide (O antigen), are key elicitors of innate immune responses. The chemical structure of these three parts has been characterized in Aeromonas. Based on the high variability of repeated units of O-polysaccharides, a total of 97 O-serogroups have been described in Aeromonas species, of which four of them (O:11; O:16; O:18 and O:34) account for more than 60% of the septicemia cases. The core of LPS is subdivided into two regions, the inner (highly conserved) and the outer core. The inner core of Aeromonas LPS is characterized by the presence of 3-deoxy-D-manno-oct-2-ulosonic (ketodeoxyoctonic) acid (Kdo) and L-glycero-D-manno-Heptoses (L,D-Hep), which are linked to the outer core, characterized by the presence of Glc, GlcN, Gal, and GalNAc (in Aeromonas salmonicida), D,D-Hep (in Aeromonas salmonicida), and L,D-Hep (in Aeromonas hydrophila). The biological relevance of these differences in the distal part of the outer core among these species has not been fully assessed to date. The inner core is attached to the lipid A, a highly conserved structure that confers endotoxic properties to the LPS when the molecule is released in blood from lysed bacteria, thus inducing a major systemic inflammatory response known as septic or endotoxic shock. In Aeromonas salmonicida subsp. salmonicida the Lipid A components contain three major lipid A molecules, differing in acylation patterns corresponding to tetra-, penta- and hexaacylated lipid A species and comprising of 4′-monophosphorylated β-2-amino-2-deoxy-D-glucopyranose-(1→6)-2-amino-2-deoxy-D-glucopyranose disaccharide. In the present review, we discuss the structure-activity relationships of Aeromonas LPS, focusing on its role in bacterial pathogenesis and its possible applications.
Resumo:
In birds, parents adjust their feeding behaviour according to breeding duties, which ultimately may lead to seasonal adjustments in nutritional physiology and hematology over the breeding season. Although avian physiology has been widely investigated in captivity, few studies have integrated individual changes in feeding and physiological ecology throughout the breeding season in wild birds. To study relationships between feeding ecology and nutritional ecophysiology in Cory"s shearwater Calonectris diomedea, we weighed and took blood samples from 28 males and 19 females during the pre-laying, egg-laying, incubation, hatching and chick-rearing periods of the breeding season. In addition, we fitted 6 birds with geolocators to track their foraging movements throughout the reproductive period. Thus, we examined individual changes in (1) nutritional condition (biochemistry metabolites); (2) oxygen carrying capacity (hematology); and (3) feeding areas and foraging effort (stable isotopes and foraging movements). Geolocators revealed a latitudinal shift in main feeding areas towards more southern and more neritic waters throughout the breeding season, which is consistent with the steady increase in δ13C signatures in the blood. Geolocators also showed a decrease in foraging effort from egg-laying to hatching, reflecting the activity decrease associated with incubation duties. Plasma metabolites, body mass and oxygen carrying capacity were associated with temporal changes in nutritional state and foraging effort in relation to recovery after migration, egg formation, fasting shifts during incubation and chick provisioning. This study shows that combining physiological and ecological approaches can help us understand the influence of breeding duties on feeding ecology and nutritional physiology in wild birds.
Resumo:
Article sobre l'ètica animal i la situació general a nivell espanyol