137 resultados para Algebraic method
Resumo:
A select-divide-and-conquer variational method to approximate configuration interaction (CI) is presented. Given an orthonormal set made up of occupied orbitals (Hartree-Fock or similar) and suitable correlation orbitals (natural or localized orbitals), a large N-electron target space S is split into subspaces S0,S1,S2,...,SR. S0, of dimension d0, contains all configurations K with attributes (energy contributions, etc.) above thresholds T0={T0egy, T0etc.}; the CI coefficients in S0 remain always free to vary. S1 accommodates KS with attributes above T1≤T0. An eigenproblem of dimension d0+d1 for S0+S 1 is solved first, after which the last d1 rows and columns are contracted into a single row and column, thus freezing the last d1 CI coefficients hereinafter. The process is repeated with successive Sj(j≥2) chosen so that corresponding CI matrices fit random access memory (RAM). Davidson's eigensolver is used R times. The final energy eigenvalue (lowest or excited one) is always above the corresponding exact eigenvalue in S. Threshold values {Tj;j=0, 1, 2,...,R} regulate accuracy; for large-dimensional S, high accuracy requires S 0+S1 to be solved outside RAM. From there on, however, usually a few Davidson iterations in RAM are needed for each step, so that Hamiltonian matrix-element evaluation becomes rate determining. One μhartree accuracy is achieved for an eigenproblem of order 24 × 106, involving 1.2 × 1012 nonzero matrix elements, and 8.4×109 Slater determinants
Resumo:
A simple extended finite field nuclear relaxation procedure for calculating vibrational contributions to degenerate four-wave mixing (also known as the intensity-dependent refractive index) is presented. As a by-product one also obtains the static vibrationally averaged linear polarizability, as well as the first and second hyperpolarizability. The methodology is validated by illustrative calculations on the water molecule. Further possible extensions are suggested
Resumo:
In the static field limit, the vibrational hyperpolarizability consists of two contributions due to: (1) the shift in the equilibrium geometry (known as nuclear relaxation), and (2) the change in the shape of the potential energy surface (known as curvature). Simple finite field methods have previously been developed for evaluating these static field contributions and also for determining the effect of nuclear relaxation on dynamic vibrational hyperpolarizabilities in the infinite frequency approximation. In this paper the finite field approach is extended to include, within the infinite frequency approximation, the effect of curvature on the major dynamic nonlinear optical processes
Resumo:
An implicitly parallel method for integral-block driven restricted active space self-consistent field (RASSCF) algorithms is presented. The approach is based on a model space representation of the RAS active orbitals with an efficient expansion of the model subspaces. The applicability of the method is demonstrated with a RASSCF investigation of the first two excited states of indole
Resumo:
Two common methods of accounting for electric-field-induced perturbations to molecular vibration are analyzed and compared. The first method is based on a perturbation-theoretic treatment and the second on a finite-field treatment. The relationship between the two, which is not immediately apparent, is made by developing an algebraic formalism for the latter. Some of the higher-order terms in this development are documented here for the first time. As well as considering vibrational dipole polarizabilities and hyperpolarizabilities, we also make mention of the vibrational Stark effec
Resumo:
Morphological descriptors are practical and essential biomarkers for diagnosis andtreatment selection for intracranial aneurysm management according to the current guidelinesin use. Nevertheless, relatively little work has been dedicated to improve the three-dimensionalquanti cation of aneurysmal morphology, automate the analysis, and hence reduce the inherentintra- and inter-observer variability of manual analysis. In this paper we propose a methodologyfor the automated isolation and morphological quanti cation of saccular intracranial aneurysmsbased on a 3D representation of the vascular anatomy.
Resumo:
In this paper a method for extracting semantic informationfrom online music discussion forums is proposed. The semantic relations are inferred from the co-occurrence of musical concepts in forum posts, using network analysis. The method starts by defining a dictionary of common music terms in an art music tradition. Then, it creates a complex network representation of the online forum by matchingsuch dictionary against the forum posts. Once the complex network is built we can study different network measures, including node relevance, node co-occurrence andterm relations via semantically connecting words. Moreover, we can detect communities of concepts inside the forum posts. The rationale is that some music terms are more related to each other than to other terms. All in all, this methodology allows us to obtain meaningful and relevantinformation from forum discussions.
Resumo:
Lexical Resources are a critical component for Natural Language Processing applications. However, the high cost of comparing and merging different resources has been a bottleneck to obtain richer resources and a broader range of potential uses for a significant number of languages. With the objective of reducing cost by eliminating human intervention, we present a new method towards the automatic merging of resources. This method includes both, the automatic mapping of resources involved to a common format and merging them, once in this format. This paper presents how we have addressed the merging of two verb subcategorization frame lexica for Spanish, but our method will be extended to cover other types of Lexical Resources. The achieved results, that almost replicate human work, demonstrate the feasibility of the approach.
Resumo:
We present a new method for constructing exact distribution-free tests (and confidence intervals) for variables that can generate more than two possible outcomes.This method separates the search for an exact test from the goal to create a non-randomized test. Randomization is used to extend any exact test relating to meansof variables with finitely many outcomes to variables with outcomes belonging to agiven bounded set. Tests in terms of variance and covariance are reduced to testsrelating to means. Randomness is then eliminated in a separate step.This method is used to create confidence intervals for the difference between twomeans (or variances) and tests of stochastic inequality and correlation.
Resumo:
Models incorporating more realistic models of customer behavior, as customers choosing froman offer set, have recently become popular in assortment optimization and revenue management.The dynamic program for these models is intractable and approximated by a deterministiclinear program called the CDLP which has an exponential number of columns. However, whenthe segment consideration sets overlap, the CDLP is difficult to solve. Column generationhas been proposed but finding an entering column has been shown to be NP-hard. In thispaper we propose a new approach called SDCP to solving CDLP based on segments and theirconsideration sets. SDCP is a relaxation of CDLP and hence forms a looser upper bound onthe dynamic program but coincides with CDLP for the case of non-overlapping segments. Ifthe number of elements in a consideration set for a segment is not very large (SDCP) can beapplied to any discrete-choice model of consumer behavior. We tighten the SDCP bound by(i) simulations, called the randomized concave programming (RCP) method, and (ii) by addingcuts to a recent compact formulation of the problem for a latent multinomial-choice model ofdemand (SBLP+). This latter approach turns out to be very effective, essentially obtainingCDLP value, and excellent revenue performance in simulations, even for overlapping segments.By formulating the problem as a separation problem, we give insight into why CDLP is easyfor the MNL with non-overlapping considerations sets and why generalizations of MNL posedifficulties. We perform numerical simulations to determine the revenue performance of all themethods on reference data sets in the literature.
Resumo:
It is proved the algebraic equality between Jennrich's (1970) asymptotic$X^2$ test for equality of correlation matrices, and a Wald test statisticderived from Neudecker and Wesselman's (1990) expression of theasymptoticvariance matrix of the sample correlation matrix.
Resumo:
The Person Trade-Off (PTO) is a methodology aimed at measuring thesocial value of health states. The rest of methodologies would measure individualutility and would be less appropriate for taking resource allocation decisions.However few studies have been conducted to test the validity of the method.We present a pilot study with this objective. The study is based on theresult of interviews to 30 undergraduate students in Economics. We judgethe validity of PTO answers by their adequacy to three hypothesis of rationality.First, we show that, given certain rationality assumptions, PTO answersshould be predicted from answers to Standard Gamble questions. This firsthypothesis is not verified. The second hypothesis is that PTO answersshould not vary with different frames of equivalent PTO questions. Thissecond hypothesis is also not verified. Our third hypothesis is that PTOvalues should predict social preferences for allocating resources betweenpatients. This hypothesis is verified. The evidence on the validity of themethod is then conflicting.
Resumo:
This paper studies the rate of convergence of an appropriatediscretization scheme of the solution of the Mc Kean-Vlasovequation introduced by Bossy and Talay. More specifically,we consider approximations of the distribution and of thedensity of the solution of the stochastic differentialequation associated to the Mc Kean - Vlasov equation. Thescheme adopted here is a mixed one: Euler/weakly interactingparticle system. If $n$ is the number of weakly interactingparticles and $h$ is the uniform step in the timediscretization, we prove that the rate of convergence of thedistribution functions of the approximating sequence in the $L^1(\Omega\times \Bbb R)$ norm and in the sup norm is of theorder of $\frac 1{\sqrt n} + h $, while for the densities is ofthe order $ h +\frac 1 {\sqrt {nh}}$. This result is obtainedby carefully employing techniques of Malliavin Calculus.
Resumo:
The Treatise on Quadrature of Fermat (c. 1659), besides containing the first known proof of the computation of the area under a higher parabola, R x+m/n dx, or under a higher hyperbola, R x-m/n dx with the appropriate limits of integration in each case , has a second part which was not understood by Fermat s contemporaries. This second part of the Treatise is obscure and difficult to read and even the great Huygens described it as'published with many mistakes and it is so obscure (with proofs redolent of error) that I have been unable to make any sense of it'. Far from the confusion that Huygens attributes to it, in this paper we try to prove that Fermat, in writing the Treatise, had a very clear goal in mind and he managed to attain it by means of a simple and original method. Fermat reduced the quadrature of a great number of algebraic curves to the quadrature of known curves: the higher parabolas and hyperbolas of the first part of the paper. Others, he reduced to the quadrature of the circle. We shall see how the clever use of two procedures, quite novel at the time: the change of variables and a particular case of the formulaof integration by parts, provide Fermat with the necessary tools to square very easily curves as well-known as the folium of Descartes, the cissoid of Diocles or the witch of Agnesi.