778 resultados para Danés i Torras, Josep, 1891-1955 -- Exhibitions
Resumo:
We analyze the light-scattering spectrum of a suspension in a viscoelastic fluid under density and velocity gradients. When a density gradient is present, the dynamic structure factor exhibits universality in the sense that its expression depends only on the reduced frequency and the reduced density gradient. For a velocity gradient, however, the universality breaks down. In this last case we have found a transition point from one to three characteristic frequencies in the spectrum, which is governed by the value of the external gradient. The presence of the viscoelastic time scales introduces a shift in the ``critical¿¿ point.
Resumo:
We obtain the exact analytical expression, up to a quadrature, for the mean exit time, T(x,v), of a free inertial process driven by Gaussian white noise from a region (0,L) in space. We obtain a completely explicit expression for T(x,0) and discuss the dependence of T(x,v) as a function of the size L of the region. We develop a new method that may be used to solve other exit time problems.
Resumo:
We consider mean-first-passage times and transition rates in bistable systems driven by white shot noise. We obtain closed analytical expressions, asymptotic approximations, and numerical simulations in two cases of interest: (i) jumps sizes exponentially distributed and (ii) jumps of the same size.
Resumo:
We study second-order properties of linear oscillators driven by exponentially correlated noise. We focus our attention on dynamical exponents and crossovers and also on resonance phenomena that appear when the driving noise is dichotomous. We also obtain the power spectrum and show its different behaviors according to the color of the noise.
Resumo:
A recent paper by J. Heinrichs [Phys. Rev. E 48, 2397 (1993)] presents analytic expressions for the first-passage times and the survival probability for a particle moving in a field of random correlated forces. We believe that the analysis there is flawed due to an improper use of boundary conditions. We compare that result, in the white noise limit, with the known exact expression of the mean exit time.
Resumo:
We consider mean-first-passage times and transition rates in bistable systems driven by dichotomous colored noise. We carry out an asymptotic expansion for short correlation times ¿c of the colored noise and find results that differ from those reported earlier. In particular, to retain corrections to O(¿c) we find that it is necessary to retain up to four derivatives of the potential function. We compare our asymptotic results to existing ones and also to exact ones obtained from numerical integration.
Resumo:
Several problems in the theory of photon migration in a turbid medium suggest the utility of calculating solutions of the telegrapher¿s equation in the presence of traps. This paper contains two such solutions for the one-dimensional problem, the first being for a semi-infinite line terminated by a trap, and the second being for a finite line terminated by two traps. Because solutions to the telegrapher¿s equation represent an interpolation between wavelike and diffusive phenomena, they will exhibit discontinuities even in the presence of traps.
Resumo:
The phenomenon of resonant activation of a Brownian particle over a fluctuating barrier is revisited. We discuss the important distinctions between barriers that can fluctuate among up and down configurations, and barriers that are always up but that can fluctuate among different heights. A resonance as a function of the barrier fluctuation rate is found in both cases, but the nature and physical description of these resonances is quite distinct. The nature of the resonances, the physical basis for the resonant behavior, and the importance of boundary conditions are discussed in some detail. We obtain analytic expressions for the escape time over the barrier that explicitly capture the minima as a function of the barrier fluctuation rate, and show that our analytic results are in excellent agreement with numerical results.
Resumo:
In this paper we address the problem of consistently constructing Langevin equations to describe fluctuations in nonlinear systems. Detailed balance severely restricts the choice of the random force, but we prove that this property, together with the macroscopic knowledge of the system, is not enough to determine all the properties of the random force. If the cause of the fluctuations is weakly coupled to the fluctuating variable, then the statistical properties of the random force can be completely specified. For variables odd under time reversal, microscopic reversibility and weak coupling impose symmetry relations on the variable-dependent Onsager coefficients. We then analyze the fluctuations in two cases: Brownian motion in position space and an asymmetric diode, for which the analysis based in the master equation approach is known. We find that, to the order of validity of the Langevin equation proposed here, the phenomenological theory is in agreement with the results predicted by more microscopic models
Resumo:
Starting from the radiative transfer equation, we obtain an analytical solution for both the free propagator along one of the axes and an arbitrary phase function in the Fourier-Laplace domain. We also find the effective absorption parameter, which turns out to be very different from the one provided by the diffusion approximation. We finally present an analytical approximation procedure and obtain a differential equation that accurately reproduces the transport process. We test our approximations by means of simulations that use the Henyey-Greenstein phase function with very satisfactory results.
Resumo:
We show that the reflecting boundary condition for a one-dimensional telegraphers equation is the same as that for the diffusion equation, in contrast to what is found for the absorbing boundary condition. The radiation boundary condition is found to have a quite complicated form. We also obtain exact solutions of the telegraphers equation in the presence of these boundaries.
Resumo:
We present exact equations and expressions for the first-passage-time statistics of dynamical systems that are a combination of a diffusion process and a random external force modeled as dichotomous Markov noise. We prove that the mean first passage time for this system does not show any resonantlike behavior.
Resumo:
We consider mean first-passage times (MFPTs) for systems driven by non-Markov gamma and McFadden dichotomous noises. A simplified derivation is given of the underlying integral equations and the theory for ordinary renewal processes is extended to modified and equilibrium renewal processes. The exact results are compared with the MFPT for Markov dichotomous noise and with the results of Monte Carlo simulations.
Resumo:
In a recent paper, [J. M. Porrà, J. Masoliver, and K. Lindenberg, Phys. Rev. E 48, 951 (1993)], we derived the equations for the mean first-passage time for systems driven by the coin-toss square wave, a particular type of dichotomous noisy signal, to reach either one of two boundaries. The coin-toss square wave, which we here call periodic-persistent dichotomous noise, is a random signal that can only change its value at specified time points, where it changes its value with probability q or retains its previous value with probability p=1-q. These time points occur periodically at time intervals t. Here we consider the stationary version of this signal, that is, equilibrium periodic-persistent noise. We show that the mean first-passage time for systems driven by this stationary noise does not show either the discontinuities or the oscillations found in the case of nonstationary noise. We also discuss the existence of discontinuities in the mean first-passage time for random one-dimensional stochastic maps.