36 resultados para vertical extensions
Resumo:
The analysis of vertical industry relations forms an essential element in the field of industrial organization. This paper tests hypotheses derived from transaction cost theory and the principal-agent problem in Chile’s petrol market. It shows that local competition plays an important role in the choice of a disintegrated vertical structure, and that low levels of service investment have the same effect. Conversely, the number of own-brand outlets and a high level of investment in services reduce the probability of disintegration. The paper demonstrates that vertical disintegration has a null effect on wholesale petrol prices and a positive effect on retail petrol prices of between 1.6 and 7 per cent, depending on fuel type.
Resumo:
Water withdrawal from Mediterranean reservoirs in summer is usually very high. Because of this, stratification is often continuous and far from the typical two-layered structure, favoring the excitation of higher vertical modes. The analysis of wind, temperature, and current data from Sau reservoir (Spain) shows that the third vertical mode of the internal seiche (baroclinic mode) dominated the internal wave field at the beginning of September 2003. We used a continuous stratification two-dimensional model to calculate the period and velocity distribution of the various modes of the internal seiche, and we calculated that the period of the third vertical mode is ;24 h, which coincides with the period of the dominating winds. As a result of the resonance between the third mode and the wind, the other oscillation modes were not excited during this period
Resumo:
We investigated convection caused by surface cooling and mixing attributable to wind shear stress and their roles as agents for the transport of phytoplankton cells in the water column by carrying out two daily surveys during the stratified period of the Sau reservoir. Green algae, diatoms, and cryptophyceae were the dominant phytoplankton communities during the surveys carried out in the middle (July) and end (September) of the stratified period. We show that a system with a linear stratification and that is subject to weak surface forcing, with weak winds , < 4 m S (-1) and low energy dissipation rate values of the order of 1028 m2 s23 or lower, enables the formation of thin phytoplankton layers. These layers quickly disappear when water parcels mix because there is a medium external forcing (convection) induced by the night surface cooling, which is characterized by energy dissipation rates on the order of , 5x10(-8)m2s(-3). During both surveys the wind generated internal waves during the entire diurnal cycle. During the day, and because of the weak winds, phytoplankton layers rise in the water column up to a depth determined by both solar heating and internal waves. In contrast, during the night phytoplankton mixes down to a depth determined by both convection and internal waves. These internal waves, together with the wind-driven current generated at the surface, seem to be the agents responsible for the horizontal transport of phytoplankton across the reservoir.
Resumo:
As wireless communications evolve towards heterogeneousnetworks, mobile terminals have been enabled tohandover seamlessly from one network to another. At the sametime, the continuous increase in the terminal power consumptionhas resulted in an ever-decreasing battery lifetime. To that end,the network selection is expected to play a key role on howto minimize the energy consumption, and thus to extend theterminal lifetime. Hitherto, terminals select the network thatprovides the highest received power. However, it has been provedthat this solution does not provide the highest energy efficiency.Thus, this paper proposes an energy efficient vertical handoveralgorithm that selects the most energy efficient network thatminimizes the uplink power consumption. The performance of theproposed algorithm is evaluated through extensive simulationsand it is shown to achieve high energy efficiency gains comparedto the conventional approach.
Resumo:
A continuous random variable is expanded as a sum of a sequence of uncorrelated random variables. These variables are principal dimensions in continuous scaling on a distance function, as an extension of classic scaling on a distance matrix. For a particular distance, these dimensions are principal components. Then some properties are studied and an inequality is obtained. Diagonal expansions are considered from the same continuous scaling point of view, by means of the chi-square distance. The geometric dimension of a bivariate distribution is defined and illustrated with copulas. It is shown that the dimension can have the power of continuum.
Resumo:
It is shown that Lotka-Volterra interaction terms are not appropriate to describe vertical cultural transmission. Appropriate interaction terms are derived and used to compute the effect of vertical cultural transmission on demic front propagation. They are also applied to a specific example, the Neolithic transition in Europe. In this example, it is found that the effect of vertical cultural transmission can be important (about 30%). On the other hand, simple models based on differential equations can lead to large errors (above 50%). Further physical, biophysical, and cross-disciplinary applications are outlined