56 resultados para stellar winds
Resumo:
The term Space Manifold Dynamics (SMD) has been proposed for encompassing the various applications of Dynamical Systems methods to spacecraft mission analysis and design, ranging from the exploitation of libration orbits around the collinear Lagrangian points to the design of optimal station-keeping and eclipse avoidance manoeuvres or the determination of low energy lunar and interplanetary transfers
Resumo:
Context. White dwarfs can be used to study the structure and evolution of the Galaxy by analysing their luminosity function and initial mass function. Among them, the very cool white dwarfs provide the information for the early ages of each population. Because white dwarfs are intrinsically faint only the nearby (~ 20 pc) sample is reasonably complete. The Gaia space mission will drastically increase the sample of known white dwarfs through its 5-6 years survey of the whole sky up to magnitude V = 20-25. Aims. We provide a characterisation of Gaia photometry for white dwarfs to better prepare for the analysis of the scientific output of the mission. Transformations between some of the most common photometric systems and Gaia passbands are derived. We also give estimates of the number of white dwarfs of the different galactic populations that will be observed. Methods. Using synthetic spectral energy distributions and the most recent Gaia transmission curves, we computed colours of three different types of white dwarfs (pure hydrogen, pure helium, and mixed composition with H/He = 0.1). With these colours we derived transformations to other common photometric systems (Johnson-Cousins, Sloan Digital Sky Survey, and 2MASS). We also present numbers of white dwarfs predicted to be observed by Gaia. Results. We provide relationships and colourcolour diagrams among different photometric systems to allow the prediction and/or study of the Gaia white dwarf colours. We also include estimates of the number of sources expected in every galactic population and with a maximum parallax error. Gaia will increase the sample of known white dwarfs tenfold to about 200 000. Gaia will be able to observe thousands of very cool white dwarfs for the first time, which will greatly improve our understanding of these stars and early phases of star formation in our Galaxy.
Resumo:
In May 1999, the European Space Agency (ESA) selected the Earth Explorer Opportunity Soil Moisture and Ocean Salinity (SMOS) mission to obtain global and frequent soil moisture and ocean salinity maps. SMOS' single payload is the Microwave Imaging Radiometer by Aperture Synthesis (MIRAS), an L-band two-dimensional aperture synthesis radiometer with multiangular observation capabilities. At L-band, the brightness temperature sensitivity to the sea surface salinity (SSS) is low, approximately 0.5 K/psu at 20/spl deg/C, decreasing to 0.25 K/psu at 0/spl deg/C, comparable to that to the wind speed /spl sim/0.2 K/(m/s) at nadir. However, at a given time, the sea state does not depend only on local winds, but on the local wind history and the presence of waves traveling from far distances. The Wind and Salinity Experiment (WISE) 2000 and 2001 campaigns were sponsored by ESA to determine the impact of oceanographic and atmospheric variables on the L-band brightness temperature at vertical and horizontal polarizations. This paper presents the results of the analysis of three nonstationary sea state conditions: growing and decreasing sea, and the presence of swell. Measured sea surface spectra are compared with the theoretical ones, computed using the instantaneous wind speed. Differences can be minimized using an "effective wind speed" that makes the theoretical spectrum best match the measured one. The impact on the predicted brightness temperatures is then assessed using the small slope approximation/small perturbation method (SSA/SPM).
Resumo:
This paper presents a model of the Stokes emission vector from the ocean surface. The ocean surface is described as an ensemble of facets with Cox and Munk's (1954) Gram-Charlier slope distribution. The study discusses the impact of different up-wind and cross-wind rms slopes, skewness, peakedness, foam cover models and atmospheric effects on the azimuthal variation of the Stokes vector, as well as the limitations of the model. Simulation results compare favorably, both in mean value and azimuthal dependence, with SSM/I data at 53° incidence angle and with JPL's WINDRAD measurements at incidence angles from 30° to 65°, and at wind speeds from 2.5 to 11 m/s.
Resumo:
After the release of the gamma-ray source catalog produced by the Fermi satellite during its first two years of operation, a significant fraction of sources still remain unassociated at lower energies. In addition to well-known high-energy emitters (pulsars, blazars, supernova remnants, etc.), theoretical expectations predict new classes of gamma-ray sources. In particular, gamma-ray emission could be associated with some of the early phases of stellar evolution, but this interesting possibility is still poorly understood. Aims: The aim of this paper is to assess the possibility of the Fermi gamma-ray source 2FGL J0607.5-0618c being associated with the massive star forming region Monoceros R2. Methods: A multi-wavelength analysis of the Monoceros R2 region is carried out using archival data at radio, infrared, X-ray, and gamma-ray wavelengths. The resulting observational properties are used to estimate the physical parameters needed to test the different physical scenarios. Results: We confirm the 2FGL J0607.5-0618c detection with improved confidence over the Fermi two-year catalog. We find that a combined effect of the multiple young stellar objects in Monoceros R2 is a viable picture for the nature of the source.
Resumo:
The atmospheric Cherenkov gamma-ray telescope MAGIC, designed for a low-energy threshold, has detected very-high-energy gamma rays from a giant flare of the distant Quasi-Stellar Radio Source (in short: radio quasar) 3C 279, at a distance of more than 5 billion light-years (a redshift of 0.536). No quasar has been observed previously in very-high-energy gamma radiation, and this is also the most distant object detected emitting gamma rays above 50 gigaelectron volts. Because high-energy gamma rays may be stopped by interacting with the diffuse background light in the universe, the observations by MAGIC imply a low amount for such light, consistent with that known from galaxy counts.
Resumo:
The microquasar LS 5039 has recently been detected as a source of very high energy (VHE) $\gamma$-rays. This detection, that confirms the previously proposed association of LS 5039 with the EGRET source 3EG~J1824$-$1514, makes of LS 5039 a special system with observational data covering nearly all the electromagnetic spectrum. In order to reproduce the observed spectrum of LS 5039, from radio to VHE $\gamma$-rays, we have applied a cold matter dominated jet model that takes into account accretion variability, the jet magnetic field, particle acceleration, adiabatic and radiative losses, microscopic energy conservation in the jet, and pair creation and absorption due to the external photon fields, as well as the emission from the first generation of secondaries. The radiative processes taken into account are synchrotron, relativistic Bremsstrahlung and inverse Compton (IC). The model is based on a scenario that has been characterized with recent observational results, concerning the orbital parameters, the orbital variability at X-rays and the nature of the compact object. The computed spectral energy distribution (SED) shows a good agreement with the available observational data.
Resumo:
The EGU Plinius Conference on Mediterranean Storms was established in 1999 within the framework of the Interdisciplinary Working Group on Natural Hazards (IWG-NH) of the former European Geophysical Society (EGS)- since 2002,European Geosciences Union (EGU). Since its advent, the Plinius Conference series has provided a crucial interdisciplinary forum for improving our understanding of hazardous storms over the Mediterranean basin that are capable of producing strong winds, heavy rains, explosive landslides, devastating flash floods and other related extremes ...
Resumo:
Context. White dwarfs can be used to study the structure and evolution of the Galaxy by analysing their luminosity function and initial mass function. Among them, the very cool white dwarfs provide the information for the early ages of each population. Because white dwarfs are intrinsically faint only the nearby (~ 20 pc) sample is reasonably complete. The Gaia space mission will drastically increase the sample of known white dwarfs through its 5-6 years survey of the whole sky up to magnitude V = 20-25. Aims. We provide a characterisation of Gaia photometry for white dwarfs to better prepare for the analysis of the scientific output of the mission. Transformations between some of the most common photometric systems and Gaia passbands are derived. We also give estimates of the number of white dwarfs of the different galactic populations that will be observed. Methods. Using synthetic spectral energy distributions and the most recent Gaia transmission curves, we computed colours of three different types of white dwarfs (pure hydrogen, pure helium, and mixed composition with H/He = 0.1). With these colours we derived transformations to other common photometric systems (Johnson-Cousins, Sloan Digital Sky Survey, and 2MASS). We also present numbers of white dwarfs predicted to be observed by Gaia. Results. We provide relationships and colour-colour diagrams among different photometric systems to allow the prediction and/or study of the Gaia white dwarf colours. We also include estimates of the number of sources expected in every galactic population and with a maximum parallax error. Gaia will increase the sample of known white dwarfs tenfold to about 200 000. Gaia will be able to observe thousands of very cool white dwarfs for the first time, which will greatly improve our understanding of these stars and early phases of star formation in our Galaxy.
Resumo:
The microquasar 1E 1740.7-2942 is a source located in the direction of the Galactic Center. It has been detected at X-rays, soft gamma-rays, and in the radio band, showing an extended radio component in the form of a double-sided jet. Although no optical counterpart has been found so far for 1E 1740.7-2942, its X-ray activity strongly points to a galactic nature. Aims.We aim to improve our understanding of the hard X-ray and gamma-ray production in the system, exploring whether the jet can emit significantly at high energies under the light of the present knowledge. Methods.We have modeled the source emission, from radio to gamma-rays, with a cold-matter dominated jet model. INTEGRAL data combined with radio and RXTE data, as well as EGRET and HESS upper-limits, are used to compare the computed and the observed spectra. Results.From our modeling, we find out that jet emission cannot explain the high fluxes observed at hard X-rays without violating at the same time the constraints from the radio data, favoring the corona origin of the hard X-rays. Also, 1E 1740.7-2942 might be detected by GLAST or AGILE at GeV energies, and by HESS and HESS-II beyond 100 GeV, with the spectral shape likely affected by photon-photon absorption in the disk and corona photon fields.
Resumo:
Microquasars are stellar x-ray binaries that behave as a scaled down version of extragalactic quasars. The star LS 5039 is a new microquasar system with apparent persistent ejection of relativistic plasma at a 3 kiloparsec distance from the sun. It may also be associated with a gamma-ray source discovered by the Energetic Gamma Ray Experiment Telescope (EGRET) on board the COMPTON-Gamma Ray Observatory satellite. Before the discovery of LS 5039, merely a handful of microquasars had been identified in the Galaxy, and none of them was detected in high-energy gamma-rays.
Resumo:
Context. There are a number of very high energy sources in the Galaxy that remain unidentified. Multi-wavelength and variability studies, and catalogue searches, are powerful tools to identify the physical counterpart, given the uncertainty in the source location and extension. Aims. This work carries out a thorough multi-wavelength study of the unidentified, very high energy source HESS J1858+020 and its environs. Methods. We have performed Giant Metrewave Radio Telescope observations at 610 MHz and 1.4 GHz to obtain a deep, low-frequency radio image of the region surrounding HESS J1858+020. We analysed archival radio, infrared, and X-ray data as well. This observational information, combined with molecular data, catalogue sources, and a nearby Fermi gamma-ray detection of unidentified origin, are combined to explore possible counterparts to the very high energy source. Results. We provide with a deep radio image of a supernova remnant that might be related to the GeV and TeV emission in the region. We confirm the presence of an H ii region next to the supernova remnant and coincident with molecular emission. A potential region of star formation is also identified. We identify several radio and X-ray sources in the surroundings. Some of these sources are known planetary nebulae, whereas others may be non-thermal extended emitters and embedded young stellar objects. Three old, background Galactic pulsars also neighbour HESS J1858+020 along the line of sight. Conclusions. The region surrounding HESS J1858+020 is rich in molecular structures and non-thermal objects that may potentially be linked to this unidentified very high energy source. In particular, a supernova remnant interacting with nearby molecular clouds may be a good candidate, but a star forming region, or a non-thermal radio source of yet unclear nature, may also be behind the gamma-ray source. The neighbouring pulsars, despite being old and distant, cannot be discarded as candidates. Further observational studies are needed, however, to narrow the search for a counterpart to the HESS source.
Resumo:
Among unidentified gamma-ray sources in the galactic plane, there are some that present significant variability and have been proposed to be high-mass microquasars. To deepen the study of the possible association between variable low galactic latitude gamma-ray sources and microquasars, we have applied a leptonic jet model based on the microquasar scenario that reproduces the gamma-ray spectrum of three unidentified gamma-ray sources, 3EG J1735-1500, 3EG J1828+0142 and GRO J1411-64, and is consistent with the observational constraints at lower energies. We conclude that if these sources were generated by microquasars, the particle acceleration processes could not be as efficient as in other objects of this type that present harder gamma-ray spectra. Moreover, the dominant mechanism of high-energy emission should be synchrotron self-Compton (SSC) scattering, and the radio jets may only be observed at low frequencies. For each particular case, further predictions of jet physical conditions and variability generation mechanisms have been made in the context of the model. Although there might be other candidates able to explain the emission coming from these sources, microquasars cannot be excluded as counterparts. Observations performed by the next generation of gamma-ray instruments, like GLAST, are required to test the proposed model.
Resumo:
We report optical spectroscopic observations of a sample of 6 low-galactic latitude microquasar candidates selected by cross-identification of X-ray and radio point source catalogs for |b|<5 degrees. Two objects resulted to be of clear extragalactic origin, as an obvious cosmologic redshift has been measured from their emission lines. For the rest, none exhibits a clear stellar-like spectrum as would be expected for genuine Galactic microquasars. Their featureless spectra are consistent with being extragalactic in origin although two of them could be also highly reddened stars. The apparent non-confirmation of our candidates suggests that the population of persistent microquasar systems in the Galaxy is more rare than previously believed. If none of them is galactic, the upper limit to the space density of new Cygnus X-3-like microquasars within 15 kpc would be 1.1\times10^{-12} per cubic pc. A similar upper limit for new LS 5039-like systems within 4 kpc is estimated to be 5.6\times10^{-11} per cubic pc.
Resumo:
We have compiled optical and radio astrometric data of the microquasar LS 5039 and derived its proper motion. This, together with the distance and radial velocity of the system, allows us to state that this source is escaping from its own regional standard of rest, with a total systemic velocity of about 150 km/s and a component perpendicular to the galactic plane larger than 100 km/s. This is probably the result of an acceleration obtained during the supernova event that created the compact object in this binary system. We have computed the trajectory of LS 5039 in the past, and searched for OB associations and supernova remnants in its path. In particular, we have studied the possible association between LS 5039 and the supernova remnant G016.8-01.1, which, despite our efforts, remains dubious. We have also discovered and studied an HI cavity in the ISM, which could have been created by the stellar wind of LS 5039 or by the progenitor of the compact object in the system. Finally, in the symmetric supernova explosion scenario, we estimate that at least 17 solar masses were lost in order to produce the high eccentricity observed. Such a mass loss could also explain the observed runaway velocity of the microquasar.