33 resultados para root coverage


Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND AND PURPOSE: The high variability of CSF volumes partly explains the inconsistency of anesthetic effects, but may also be due to image analysis itself. In this study, criteria for threshold selection are anatomically defined. METHODS: T2 MR images (n = 7 cases) were analyzed using 3-dimentional software. Maximal-minimal thresholds were selected in standardized blocks of 50 slices of the dural sac ending caudally at the L5-S1 intervertebral space (caudal blocks) and middle L3 (rostral blocks). Maximal CSF thresholds: threshold value was increased until at least one voxel in a CSF area appeared unlabeled and decreased until that voxel was labeled again: this final threshold was selected. Minimal root thresholds: thresholds values that selected cauda equina root area but not adjacent gray voxels in the CSF-root interface were chosen. RESULTS: Significant differences were found between caudal and rostral thresholds. No significant differences were found between expert and nonexpert observers. Average max/min thresholds were around 1.30 but max/min CSF volumes were around 1.15. Great interindividual CSF volume variability was detected (max/min volumes 1.6-2.7). CONCLUSIONS: The estimation of a close range of CSF volumes which probably contains the real CSF volume value can be standardized and calculated prior to certain intrathecal procedures

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this project is to accomplish an application software based on Matlab to calculate the radioelectrical coverage by surface wave of broadcast radiostations in the band of Medium Wave (WM) all around the world. Also, given the location of a transmitting and a receiving station, the software should be able to calculate the electric field that the receiver should receive at that specific site. In case of several transmitters, the program should search for the existence of Inter-Symbol Interference, and calculate the field strenght accordingly. The application should ask for the configuration parameters of the transmitter radiostation within a Graphical User Interface (GUI), and bring back the resulting coverage above a map of the area under study. For the development of this project, it has been used several conductivity databases of different countries, and a high-resolution elevation database (GLOBE). Also, to calculate the field strenght due to groundwave propagation, it has been used ITU GRWAVE program, which must be integrated into a Matlab interface to be used by the application developed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Understanding the factors controlling fine root respiration (FRR) at different temporal scales will help to improve our knowledge about the spatial and temporal variability of soil respiration (SR) and to improve future predictions of CO2 effluxes to the atmosphere. Here we present a comparative study of how FRR respond to variability in soil temperature and moisture in two widely spread species, Scots pines (Pinus sylvestris L.) and Holm-oaks (HO; Quercus ilex L.). Those two species show contrasting water use strategies during the extreme summer-drought conditions that characterize the Mediterranean climate. The study was carried out on a mixed Mediterranean forest where Scots pines affected by drought induced die-back are slowly being replaced by the more drought resistant HO. FRR was measured in spring and early fall 2013 in excised roots freshly removed from the soil and collected under HO and under Scots pines at three different health stages: dead (D), defoliated (DP) and non-defoliated (NDP). Variations in soil temperature, soil water content and daily mean assimilation per tree were also recorded to evaluate FRR sensibility to abiotic and biotic environmental variations. Our results show that values of FRR were substantially lower under HO (1.26 ± 0.16 microgram CO2 /groot·min) than under living pines (1.89 ± 0.19 microgram CO2 /groot·min) which disagrees with the similar rates of soil respiration previously observed under both canopies and suggest that FRR contribution to total SR varies under different tree species. The similarity of FRR rates under HO and DP furthermore confirms other previous studies suggesting a recent Holm-oak root colonization of the gaps under dead trees. A linear mixed effect model approach indicated that seasonal variations in FRR were best explained by soil temperature (p<0.05) while soil moisture was not exerting any direct control over FRR, despite the low soil moisture values during the summer sampling. Plant assimilation rates were positively related to FRR explaining part of the observed variability (p<0.01). However the positive relations of FRR with plant assimilation occurred mainly during spring, when both soil moisture and plant assimilation rates were higher. Our results finally suggest that plants might be able to maintain relatively high rates of FRR during the sub-optimal abiotic and biotic summer conditions probably thanks to their capacity to re-mobilize carbon reserves and their capacity to passively move water from moister layers to upper layers with lower water potentials (where the FR were collected) by hydraulic lift.