41 resultados para root: shoot ratio
Resumo:
This study aimed to assess the response of apical and periapical tissues of dogs¿ teeth after root canal filling with different materials. Forty roots from dogs¿ premolars were prepared biomechanically and assigned to 4 groups filled with: Group I: commercial calcium hydroxide and polyethylene glycol-based paste (Calen®) thickened with zinc oxide; Group II: paste composed of iodoform, Rifocort® and camphorated amonochlorophenol; Group III: zinc oxide-eugenol cement; Group IV: sterile saline. After 30 days, the samples were subjected to histological processing. The histopathological findings revealed that in Groups I and IV the apical and periapical regions exhibited normal appearance, with large number of fibers and cells and no resorption of mineralized tissues. In Group II, mild inflammatory infiltrate and mild edema were observed, with discrete fibrogenesis and bone resorption. Group III showed altered periapical region and thickened periodontal ligament with presence of inflammatory cells and edema. It may be concluded that the Calen paste thickened with zinc oxide yielded the best tissue response, being the most indicated material for root canal filling of primary teeth with pulp vitality.
Resumo:
This article summarizes the configurations involving isotope ratio mass spectrometry (IRMS) technology available at the CCiTUB and the wide range of possible applications. Some examples of these applications are shown.
Resumo:
Further knowledge of the processes conditioning nitrogen use efficiency (NUE) is of great relevance to crop productivity. The aim of this paper was characterise C and N partitioning during grain filling and their implications for NUE. Cereals such as bread wheat (Triticum aestivum L. cv Califa sur), triticale (× Triticosecale Wittmack cv. Imperioso) and tritordeum (× Tritordeum Asch. & Graebn line HT 621) were grown under low (LN, 5 mm NH4NO3) and high (HN, 15 mm NH4NO3) N conditions. We conducted simultaneous double labelling (12CO2 and 15NH415NO3) in order to characterise C and N partitioning during grain filling. Although triticale plants showed the largest total and ear dry matter values in HN conditions, the large investment in shoot and root biomass negatively affected ear NUE. Tritordeum was the only genotype that increased NUE in both N treatments (NUEtotal), whereas in wheat, no significant effect was detected. N labelling revealed that N fertilisation during post-anthesis was more relevant for wheat and tritordeum grain filling than for triticale. The study also revealed that the investments of C and N in flag leaves and shoots, together with the"waste" of photoassimilates in respiration, conditioned the NUE of plants, and especially under LN. These results suggest that C and N use by these plants needs to be improved in order to increase ear C and N sinks, especially under LN. It is also remarkable that even though tritordeum shows the largest increase in NUE, the low yield of this cereal limits its agronomic value.
Resumo:
Objectives: A study was made to determine the temperature increment at the dental root surface following Er,Cr:YSGG laser irradiation of the root canal. Design. Human canines and incisors previously instrumented to K file number ISO 30 were used. Irradiation was carried out with glass fiber endodontic tips measuring 200 μm in diameter and especially designed for insertion in the root canal. The teeth were irradiated at 1 and 2 W for 30 seconds, without water spraying or air, and applying a continuous circular movement (approximately 2 mm/sec.) in the apico-coronal direction. Results: At the 1 W power setting, the mean temperature increment was 3.84ºC versus 5.01ºC at 2 W. In all cases the difference in mean value obtained after irradiation versus the mean baseline temperature proved statistically significant (p< 0.05). Conclusions: Application of the Er,Cr:YSGG laser gives rise to a statistically significant temperature increment at the external root surface, though this increment is probably clinically irrelevant, since it would appear to damage the tissues (periodontal ligament and alveolar bone) in proximity to the treated tooth
Resumo:
We examined root morphological and functional differences caused by restrictions imposed to vertical growth in the root system of holm oak (Quercus ilex L.) seedlings to assess the consequences of using nursery containers in the development of a confined root system for this species. Thus, root morphological, topological and functional parameters, including hydraulic conductance per leaf unit surface area (K $_{\rm RL})$, were investigated in one-year seedlings cultivated in three PVC tubes differing in length (20, 60 and 100 cm). Longer tubes showed greater projected root area, root volume, total and fine root lengths, specific root length (SRL) and K$_{\rm RL}$ values than did shorter tubes. On the other hand, the length of coarse roots (diameter > 4.5 mm) and the average root diameter were greater in shorter tubes. The strong positive correlation found between K$_{\rm RL}$ and SRL (r=+0.69; P<0.001) indicated that root thickness was inversely related to water flow through the root system. We concluded that root systems developed in longer tubes are more efficient for plant water uptake and, therefore, changes in root pattern produced in standard forest containers (i.e. about 20 cm length) may in fact prevent a proper establishment of the holm oak in the field, particularly in xeric environments.
Resumo:
The topographical distribution of sciatic and femoral nerve sensory neuronal somata in the L4 dorsal root ganglion of the adult rat was mapped after retrograde tracing with one or two of the dyes Fast Blue, Fluoro-Gold, or Diamidino Yellow. The tracers were applied to the proximal transected end of either nerve alone, or from both nerves in the same animal using separate tracers. Three-dimensional reconstructions of the distribution of labelled neurones were made from serial sections of the L4 dorsal root ganglion which is the only ganglion that these two nerves share. The results showed that with little overlap, femoral nerve neurones distribute dorsally and rostrally whereas sciatic nerve neurones distribute medially and ventrally. This finding indicates the existence of a somatotopical organisation for the representation of different peripheral nerves in dorsal root ganglia of adult animals.
Resumo:
The present study was designed to investigate the efficacy of the fluorescent dyes Fast Blue (FB), Fluoro-Gold (FG), and Diamidino Yellow (DY) for retrograde tracing of lumbar dorsal root ganglia after their subcutaneous injection into different hindlimb digits. Injection of equal volumes (0.5 mu l) of 5% FB or 2% FG resulted in similar mean numbers of sensory neurones labelled by each tracer. Injection of equal volumes (0.5 mu l) of FB or FG in a single digit followed 10 days later by a second injection of the same volume of 5% DY into the same digit resulted in similar mean numbers of labelled sensory neurones for each of the three tracers. Furthermore, on average, 75% of all the FB-labelled cells and 74% of all FC-labelled cells also contained DY. Repeating the same experiment with an increased volume of DY (1.5 mu l) resulted in an increase in the mean number of double-labelled profiles to 82 and 84% for FB and FG, respectively. The results show that FB, FG and DY label similar numbers of cutaneous afferents and that a high level of double labelling may be obtained after sequential injections in digits. These properties make them suitable candidates in investigations where a combination of tracers with similar labelling efficacies is needed.
Resumo:
We analyzed offspring sex ratio variation in Mediterranean Cory's Shearwater (Calonectris d. diomedea) during two consecutive breeding seasons in two colonies. We test for differential breeding conditions between years and colonies looking at several breeding parameters and parental condition. We then explored the relationship between offspring sex ratio and parental condition and breeding parameters. This species is sexually dimorphic with males larger and heavier than females; consequently we expected differential parental cost in rearing sexes, or a greater sensitivity of male chicks to adverse conditions, which may lead to biased sex ratios. Chicks were sexed molecularly by the amplification of the CHD genes. Offspring sex ratio did not differ from parity, either at hatching or fledging, regardless of the colony or year. However, parental body condition and breeding parameters such as egg size and breeding success were different between years and colonies. Nevertheless, neither nestling mortality nor body condition at fledging varied between years or colonies, suggesting that male and female chicks were probably not differentially affected by variability in breeding conditions.
Resumo:
BACKGROUND AND PURPOSE: The high variability of CSF volumes partly explains the inconsistency of anesthetic effects, but may also be due to image analysis itself. In this study, criteria for threshold selection are anatomically defined. METHODS: T2 MR images (n = 7 cases) were analyzed using 3-dimentional software. Maximal-minimal thresholds were selected in standardized blocks of 50 slices of the dural sac ending caudally at the L5-S1 intervertebral space (caudal blocks) and middle L3 (rostral blocks). Maximal CSF thresholds: threshold value was increased until at least one voxel in a CSF area appeared unlabeled and decreased until that voxel was labeled again: this final threshold was selected. Minimal root thresholds: thresholds values that selected cauda equina root area but not adjacent gray voxels in the CSF-root interface were chosen. RESULTS: Significant differences were found between caudal and rostral thresholds. No significant differences were found between expert and nonexpert observers. Average max/min thresholds were around 1.30 but max/min CSF volumes were around 1.15. Great interindividual CSF volume variability was detected (max/min volumes 1.6-2.7). CONCLUSIONS: The estimation of a close range of CSF volumes which probably contains the real CSF volume value can be standardized and calculated prior to certain intrathecal procedures
Resumo:
A thermodynamically consistent damage model for the simulation of progressive delamination under variable mode ratio is presented. The model is formulated in the context of the Damage Mechanics. The constitutive equation that results from the definition of the free energy as a function of a damage variable is used to model the initiation and propagation of delamination. A new delamination initiation criterion is developed to assure that the formulation can account for changes in the loading mode in a thermodynamically consistent way. The formulation proposed accounts for crack closure effets avoiding interfacial penetration of two adjacent layers aftercomplete decohesion. The model is implemented in a finite element formulation. The numerical predictions given by the model are compared with experimental results
Resumo:
Understanding the factors controlling fine root respiration (FRR) at different temporal scales will help to improve our knowledge about the spatial and temporal variability of soil respiration (SR) and to improve future predictions of CO2 effluxes to the atmosphere. Here we present a comparative study of how FRR respond to variability in soil temperature and moisture in two widely spread species, Scots pines (Pinus sylvestris L.) and Holm-oaks (HO; Quercus ilex L.). Those two species show contrasting water use strategies during the extreme summer-drought conditions that characterize the Mediterranean climate. The study was carried out on a mixed Mediterranean forest where Scots pines affected by drought induced die-back are slowly being replaced by the more drought resistant HO. FRR was measured in spring and early fall 2013 in excised roots freshly removed from the soil and collected under HO and under Scots pines at three different health stages: dead (D), defoliated (DP) and non-defoliated (NDP). Variations in soil temperature, soil water content and daily mean assimilation per tree were also recorded to evaluate FRR sensibility to abiotic and biotic environmental variations. Our results show that values of FRR were substantially lower under HO (1.26 ± 0.16 microgram CO2 /groot·min) than under living pines (1.89 ± 0.19 microgram CO2 /groot·min) which disagrees with the similar rates of soil respiration previously observed under both canopies and suggest that FRR contribution to total SR varies under different tree species. The similarity of FRR rates under HO and DP furthermore confirms other previous studies suggesting a recent Holm-oak root colonization of the gaps under dead trees. A linear mixed effect model approach indicated that seasonal variations in FRR were best explained by soil temperature (p<0.05) while soil moisture was not exerting any direct control over FRR, despite the low soil moisture values during the summer sampling. Plant assimilation rates were positively related to FRR explaining part of the observed variability (p<0.01). However the positive relations of FRR with plant assimilation occurred mainly during spring, when both soil moisture and plant assimilation rates were higher. Our results finally suggest that plants might be able to maintain relatively high rates of FRR during the sub-optimal abiotic and biotic summer conditions probably thanks to their capacity to re-mobilize carbon reserves and their capacity to passively move water from moister layers to upper layers with lower water potentials (where the FR were collected) by hydraulic lift.