41 resultados para oscillatory breathing
Resumo:
Multiple Sclerosis is the most common non-traumatic cause of neurologicaldisability in young people. There is no cure yet, and until recently, few long-termtherapies existed. Interferon beta (IFNβ) was the first treatment, and remains the mostcommonly prescribed. One of the most significant problems of IFNβ therapy is theproduction of drug specific antibodies. Up to 45% of patients develop neutralizingantibodies (NAbs) to IFNβ products. The neutralizing antibody binds to the biologicalagent preventing its interaction with its receptor, inhibiting the biological action of theprotein, which abrogates the clinical efficacy of IFNβ treatment. Interferon-betamediates its response by binding to its high affinity cell surface receptor and initiatingthe JAK/STAT signalling cascade. In this project we have analyzed the IFNβ signalingpathway in macrophages when neutralizing antibodies are present. The response tothis pathway after IFNβ stimulation shows a transient oscillatory rhythm of STAT1phosphorylation, which varies as NAbs concentration increases. To improve ourunderstanding of that behavior, we extended an existing mathematical model based onnonlinear ordinary differential equations of JAK/STAT pathway by including IFN-NAbassociation and IFN-activation receptor. Combining our theoretical model withexperimental data we could study the role of neutralizing antibodies on the molecularresponse and determine its lifetime after cytokine stimulation.
Resumo:
Problema del estudio: El sector de enfermería perteneciente a las Unidades de Cuidados Intensivos presentan estrés, y se ofrece la Técnica de respiración Jacobson como herramienta para disminuir los niveles y los problemas derivados del estrés. Objetivo general: Evaluar la eficacia de la técnica de respiración Jacobson sobre el estrés en los profesionales de enfermería de UCI. Objetivos específicos: Diseñar un taller de respiración de la técnica Jacobson, para enfermería de UCI; comparar los niveles de estrés de los enfermeros de UCI antes y después de la intervención mediante los cuestionarios STAI, NSS y NWI; y evaluar los principales factores estresantes de los enfermeros/as en su trabajo, comparando los 2 grupos de la intervención (los que realizan el programa de la Técnica de relajación Jacobson y los que no participan). Metodología: El ámbito de estudio será una planta del servicio de UCI de un Hospital de Agudos. Se trata de un ensayo clínico aleatorio y experimental, que constará de 2 grupos control; uno realizará la intervención (Grupo 1) y el otro no (Grupo 2). Los sujetos del estudio son las enfermeras/os de una planta de UCI de un Hospital de Agudos, incluidas enfermeras administrativas y gerentes. Los instrumentos que se utilizarán son: la recogida de datos personales de cada participante, Test STAI (State-Trait Anxiety Inventory), Escala de Estrés de Enfermería NSS (Nursing Stress Scale) y Escala del entorno de práctica enfermera del NWI (Nursing Work Index). Limitaciones del estudio: Pérdidas de seguimiento y la no participación de las enfermeras/os en el estudio.
Resumo:
Recent experiments have established that information can be encoded in the spike times of neurons relative to the phase of a background oscillation in the local field potential—a phenomenon referred to as “phase-of-firing coding” (PoFC). These firing phase preferences could result from combining an oscillation in the input current with a stimulus-dependent static component that would produce the variations in preferred phase, but it remains unclear whether these phases are an epiphenomenon or really affect neuronal interactions—only then could they have a functional role. Here we show that PoFC has a major impact on downstream learning and decoding with the now well established spike timing-dependent plasticity (STDP). To be precise, we demonstrate with simulations how a single neuron equipped with STDP robustly detects a pattern of input currents automatically encoded in the phases of a subset of its afferents, and repeating at random intervals. Remarkably, learning is possible even when only a small fraction of the afferents (~10%) exhibits PoFC. The ability of STDP to detect repeating patterns had been noted before in continuous activity, but it turns out that oscillations greatly facilitate learning. A benchmark with more conventional rate-based codes demonstrates the superiority of oscillations and PoFC for both STDP-based learning and the speed of decoding: the oscillation partially formats the input spike times, so that they mainly depend on the current input currents, and can be efficiently learned by STDP and then recognized in just one oscillation cycle. This suggests a major functional role for oscillatory brain activity that has been widely reported experimentally.
Resumo:
Muscle dysfunction often occurs in patients with chronic obstructive pulmonary disease (COPD) and may involve both respiratory and locomotor (peripheral) muscles. The loss of strength and/or endurance in the former can lead to ventilatory insufficiency, whereas in the latter it limits exercise capacity and activities of daily life. Muscle dysfunction is the consequence of complex interactions between local and systemic factors, frequently coexisting in COPD patients. Pulmonary hyperinflation along with the increase in work of breathing that occur in COPD appear as the main contributing factors to respiratory muscle dysfunction. By contrast, deconditioning seems to play a key role in peripheral muscle dysfunction. However, additional systemic factors, including tobacco smoking, systemic inflammation, exercise, exacerbations, nutritional and gas exchange abnormalities, anabolic insufficiency, comorbidities and drugs, can also influence the function of both respiratory and peripheral muscles, by inducing modifications in their local microenvironment. Under all these circumstances, protein metabolism imbalance, oxidative stress, inflammatory events, as well as muscle injury may occur, determining the final structure and modulating the function of different muscle groups. Respiratory muscles show signs of injury as well as an increase in several elements involved in aerobic metabolism (proportion of type I fibers, capillary density, and aerobic enzyme activity) whereas limb muscles exhibit a loss of the same elements, injury, and a reduction in fiber size. In the present review we examine the current state of the art of the pathophysiology of muscle dysfunction in COPD.
Resumo:
We consider a renormalizable two-dimensional model of dilaton gravity coupled to a set of conformal fields as a toy model for quantum cosmology. We discuss the cosmological solutions of the model and study the effect of including the back reaction due to quantum corrections. As a result, when the matter density is below some threshold new singularities form in a weak-coupling region, which suggests that they will not be removed in the full quantum theory. We also solve the Wheeler-DeWitt equation. Depending on the quantum state of the Universe, the singularities may appear in a quantum region where the wave function is not oscillatory, i.e., when there is not a well-defined notion of classical spacetime.
Resumo:
Thereis now growing evidencethatthe hippocampus generatestheta rhythmsthat can phase biasfast neural oscillationsinthe neocortex, allowing coordination of widespread fast oscillatory populations outside limbic areas. A recent magnetoencephalographic study showed that maintenance of configural-relational scene information in a delayed match-to-sample (DMS) task was associated with replay of that information during the delay period. The periodicity of the replay was coordinated by the phase of the ongoing theta rhythm, and the degree of theta coordination during the delay period was positively correlated with DMS performance. Here, we reanalyzed these data to investigate which brain regions were involved in generating the theta oscillations that coordinated the periodic replay of configural- relational information. We used a beamformer algorithm to produce estimates of regional theta rhythms and constructed volumetric images of the phase-locking between the local theta cycle and the instances of replay (in the 13- 80 Hz band). We found that individual differences in DMS performancefor configural-relational associations were relatedtothe degree of phase coupling of instances of cortical reactivations to theta oscillations generated in the right posterior hippocampus and the right inferior frontal gyrus. This demonstrates that the timing of memory reactivations in humans is biased toward hippocampal theta phase
Resumo:
El projecte està basat en la creació d'una aplicació per dispositius mòbils android i que fent servir l'ús del micròfon capturi el so que genera l'usuari i pugui determinar si s'està respirant i en quin punt de la respiració es troba l'usuari. S'ha dut a terme una filosofia de disseny orientada a l'usuari (DCU) de manera que el primer pas ha sigut realitzar un prototip i un 'sketch'. A continuació, s'han realitzat 10 aplicacions test i en cadascuna d'elles s'ha ampliat la funcionalitat fins a arribar a obtenir una aplicació base que s'aproxima al disseny inicial generat per mitjà del prototip. El més important dels dissenys algorísmics que s'han realitzat per la aplicació es la capacitat de processar el senyal en temps real, ja que fins i tot s'ha pogut aplicar la transformada ràpida de Fourier (FFT) en temps real sense que el rendiment de l'aplicació es veies afectat. Això ha sigut possible gràcies al disseny del processament amb doble buffer i amb un fil d'execució dedicat independent del fil principal d'execució del programa 'UI Thread'
Resumo:
The causal mechanism and seasonal evolution of the internal wave field in a deep, warm, monomictic reservoirare examined through the analysis of field observations and numerical techniques. The study period extends fromthe onset of thermal stratification in the spring until midsummer in 2005. During this time, wind forcing wasperiodic, with a period of 24 h (typical of land–sea breezes), and the thermal structure in the lake wascharacterized by the presence of a shallow surface layer overlying a thick metalimnion, typical of small to mediumsized reservoirs with deep outtakes. Basin-scale internal seiches of high vertical mode (ranging from mode V3 toV5) were observed in the metalimnion. The structure of the dominant modes of oscillation changed asstratification evolved on seasonal timescales, but in all cases, their periods were close to that of the local windforcing (i.e., 24 h), suggesting a resonant response. Nonresonant oscillatory modes of type V1 and V2 becamedominant after large frontal events, which disrupted the diurnal periodicity of the wind forcing
Resumo:
Improve the prediction of the vital and functional prognosis of comatose patients suffering from anoxic-ischemic encephalopathy after successful resuscitation from a cardiac arrest, addmitted to the Intensive Care and Coronary Units of the Dr. Josep Trueta Hospital, based on clinical, neurophysiological and biochemical results.The results of these different tests, revised and combined all together, will improve the prediction of the patients' prognosis, leading to an accurate vital and functional outcome, as they only have been studied separately so far. Anoxia is the third most frequent cause of coma, and the most common cause of post-anoxic coma in adults is the cardiac arrest. The incidence of hypoxic-ischemic brain injury is not well known, but it is certain that cardiac arrest, the most common cause of post-anoxic coma, affects approximately 24000 to 50000 Spanish people every year, most of them occuring out of the hospital. A cardiac arrest is the abrupt cessation of normal circulation of the blood due to failure of the heart to contract effectively during systole. It is different from, but may be caused by, a heart attack or myocardial infarction, where blood flow to the still-beating heart is interrupted. Arrested blood circulation prevents delivery of oxygen to all parts of the body. Cerebral hypoxia, or lack of oxygen supply to the brain, causes victims to lose consciousness and to stop normal breathing, although agonal breathing may still occur. Brain injury is likely if cardiac arrest is untreated for more than five minutes
Resumo:
Language acquisition is a complex process that requires the synergic involvement of different cognitive functions, which include extracting and storing the words of the language and their embedded rules for progressive acquisition of grammatical information. As has been shown in other fields that study learning processes, synchronization mechanisms between neuronal assemblies might have a key role during language learning. In particular, studying these dynamics may help uncover whether different oscillatory patterns sustain more item-based learning of words and rule-based learning from speech input. Therefore, we tracked the modulation of oscillatory neural activity during the initial exposure to an artificial language, which contained embedded rules. We analyzed both spectral power variations, as a measure of local neuronal ensemble synchronization, as well as phase coherence patterns, as an index of the long-range coordination of these local groups of neurons. Synchronized activity in the gamma band (2040 Hz), previously reported to be related to the engagement of selective attention, showed a clear dissociation of local power and phase coherence between distant regions. In this frequency range, local synchrony characterized the subjects who were focused on word identification and was accompanied by increased coherence in the theta band (48 Hz). Only those subjects who were able to learn the embedded rules showed increased gamma band phase coherence between frontal, temporal, and parietal regions.
Resumo:
An increase in cognitive control has been systematically observed in responses produced immediately after the commission of an error. Such responses show a delay in reaction time (post-error slowing) and an increase in accuracy. To characterize the neurophysiological mechanism involved in the adaptation of cognitive control, we examined oscillatory electrical brain activity by electroencephalogram and its corresponding neural network by event-related functional magnetic resonance imaging in three experiments. We identified a new oscillatory thetabeta component related to the degree of post-error slowing in the correct responses following an erroneous trial. Additionally, we found that the activity of the right dorsolateral prefrontal cortex, the right inferior frontal cortex, and the right superior frontal cortex was correlated with the degree of caution shown in the trial following the commission of an error. Given the overlap between this brain network and the regions activated by the need to inhibit motor responses in a stop-signal manipulation, we conclude that the increase in cognitive control observed after the commission of an error is implemented through the participation of an inhibitory mechanism.