94 resultados para optimal fishing effort
Resumo:
In this paper we propose a new measure of the degree of conservativeness of an inde- pendent central bank and we derive the optimal value from the social welfare perspective. We show that the mere appointment of an independent central bank is not enough to achieve lower inflation, which may explain the mixed results found between central bank independence and inflation in the empirical literature. Further, the optimal central bank should not be too conservative. For instance, we will show that in some circumstances it will be optimal that the central bank is less conservative than society in the Rogoff sense. JEL classification: E58, E63. Keywords: Central bank; Conservativeness; Independence.
Resumo:
Most network operators have considered reducing Label Switched Routers (LSR) label spaces (i.e. the number of labels that can be used) as a means of simplifying management of underlaying Virtual Private Networks (VPNs) and, hence, reducing operational expenditure (OPEX). This letter discusses the problem of reducing the label spaces in Multiprotocol Label Switched (MPLS) networks using label merging - better known as MultiPoint-to-Point (MP2P) connections. Because of its origins in IP, MP2P connections have been considered to have tree- shapes with Label Switched Paths (LSP) as branches. Due to this fact, previous works by many authors affirm that the problem of minimizing the label space using MP2P in MPLS - the Merging Problem - cannot be solved optimally with a polynomial algorithm (NP-complete), since it involves a hard- decision problem. However, in this letter, the Merging Problem is analyzed, from the perspective of MPLS, and it is deduced that tree-shapes in MP2P connections are irrelevant. By overriding this tree-shape consideration, it is possible to perform label merging in polynomial time. Based on how MPLS signaling works, this letter proposes an algorithm to compute the minimum number of labels using label merging: the Full Label Merging algorithm. As conclusion, we reclassify the Merging Problem as Polynomial-solvable, instead of NP-complete. In addition, simulation experiments confirm that without the tree-branch selection problem, more labels can be reduced
Resumo:
There are many factors that influence the day-ahead market bidding strategies of a generation company (GenCo) in the current energy market framework. Environmental policy issues have become more and more important for fossil-fuelled power plants and they have to be considered in their management, giving rise to emission limitations. This work allows to investigate the influence of both the allowances and emission reduction plan, and the incorporation of the derivatives medium-term commitments in the optimal generation bidding strategy to the day-ahead electricity market. Two different technologies have been considered: the coal thermal units, high-emission technology, and the combined cycle gas turbine units, low-emission technology. The Iberian Electricity Market and the Spanish National Emissions and Allocation Plans are the framework to deal with the environmental issues in the day-ahead market bidding strategies. To address emission limitations, some of the standard risk management methodologies developed for financial markets, such as Value-at-Risk (VaR) and Conditional Value-at-Risk (CVaR), have been extended. This study offers to electricity generation utilities a mathematical model to determinate the individual optimal generation bid to the wholesale electricity market, for each one of their generation units that maximizes the long-run profits of the utility abiding by the Iberian Electricity Market rules, the environmental restrictions set by the EU Emission Trading Scheme, as well as the restrictions set by the Spanish National Emissions Reduction Plan. The economic implications for a GenCo of including the environmental restrictions of these National Plans are analyzed and the most remarkable results will be presented.
Resumo:
In the context of fading channels it is well established that, with a constrained transmit power, the bit rates achievable by signals that are not peaky vanish as the bandwidth grows without bound. Stepping back from the limit, we characterize the highest bit rate achievable by such non-peaky signals and the approximate bandwidth where that apex occurs. As it turns out, the gap between the highest rate achievable without peakedness and the infinite-bandwidth capacity (with unconstrained peakedness) is small for virtually all settings of interest to wireless communications. Thus, although strictly achieving capacity in wideband fading channels does require signal peakedness, bit rates not far from capacity can be achieved with conventional signaling formats that do not exhibit the serious practical drawbacks associated with peakedness. In addition, we show that the asymptotic decay of bit rate in the absence of peakedness usually takes hold at bandwidths so large that wideband fading models are called into question. Rather, ultrawideband models ought to be used.
Resumo:
It has long been standard in agency theory to search for incentive-compatible mechanisms on the assumption that people care only about their own material wealth. However, this assumption is clearly refuted by numerous experiments, and we feel that it may be useful to consider nonpecuniary utility in mechanism design and contract theory. Accordingly, we devise an experiment to explore optimal contracts in an adverse-selection context. A principal proposes one of three contract menus, each of which offers a choice of two incentive-compatible contracts, to two agents whose types are unknown to the principal. The agents know the set of possible menus, and choose to either accept one of the two contracts offered in the proposed menu or to reject the menu altogether; a rejection by either agent leads to lower (and equal) reservation payoffs for all parties. While all three possible menus favor the principal, they do so to varying degrees. We observe numerous rejections of the more lopsided menus, and approach an equilibrium where one of the more equitable contract menus (which one depends on the reservation payoffs) is proposed and agents accept a contract, selecting actions according to their types. Behavior is largely consistent with all recent models of social preferences, strongly suggesting there is value in considering nonpecuniary utility in agency theory.
Resumo:
An incentives based theory of policing is developed which can explain the phenomenon of random “crackdowns,” i.e., intermittent periods of high interdiction/surveillance. For a variety of police objective functions, random crackdowns can be part of the optimal monitoring strategy. We demonstrate support for implications of the crackdown theory using traffic data gathered by the Belgian Police Department and use the model to estimate the deterrence effectof additional resources spent on speeding interdiction.
Resumo:
This paper studies monetary and fiscal policy interactions in a two country model, where taxes on firms sales are optimally chosen and the monetary policy is set cooperatively.It turns out that in a two country setting non-cooperative fiscal policy makers have an incentive to change taxes on sales depending on shocks realizations in order to reduce output production. Therefore whether the fiscal policy is set cooperatively or not matters for optimal monetary policy decisions. Indeed, as already shown in the literature, the cooperative monetary policy maker implements the flexible price allocation only when special conditions on the value of the distortions underlying the economy are met. However, if non-cooperative fiscal policy makers set the taxes on firms sales depending on shocks realizations, these conditions cannot be satisfied; conversely, when fiscal policy is cooperative, these conditions are fulfilled. We conclude that whether implementing the flexible price allocation is optimal or not depends on the fiscal policy regime.
Resumo:
The achievable region approach seeks solutions to stochastic optimisation problems by: (i) characterising the space of all possible performances(the achievable region) of the system of interest, and (ii) optimisingthe overall system-wide performance objective over this space. This isradically different from conventional formulations based on dynamicprogramming. The approach is explained with reference to a simpletwo-class queueing system. Powerful new methodologies due to the authorsand co-workers are deployed to analyse a general multiclass queueingsystem with parallel servers and then to develop an approach to optimalload distribution across a network of interconnected stations. Finally,the approach is used for the first time to analyse a class of intensitycontrol problems.
Resumo:
Most research on single machine scheduling has assumedthe linearity of job holding costs, which is arguablynot appropriate in some applications. This motivates ourstudy of a model for scheduling $n$ classes of stochasticjobs on a single machine, with the objective of minimizingthe total expected holding cost (discounted or undiscounted). We allow general holding cost rates that are separable,nondecreasing and convex on the number of jobs in eachclass. We formulate the problem as a linear program overa certain greedoid polytope, and establish that it issolved optimally by a dynamic (priority) index rule,whichextends the classical Smith's rule (1956) for the linearcase. Unlike Smith's indices, defined for each class, ournew indices are defined for each extended class, consistingof a class and a number of jobs in that class, and yieldan optimal dynamic index rule: work at each time on a jobwhose current extended class has larger index. We furthershow that the indices possess a decomposition property,as they are computed separately for each class, andinterpret them in economic terms as marginal expected cost rate reductions per unit of expected processing time.We establish the results by deploying a methodology recentlyintroduced by us [J. Niño-Mora (1999). "Restless bandits,partial conservation laws, and indexability. "Forthcomingin Advances in Applied Probability Vol. 33 No. 1, 2001],based on the satisfaction by performance measures of partialconservation laws (PCL) (which extend the generalizedconservation laws of Bertsimas and Niño-Mora (1996)):PCL provide a polyhedral framework for establishing theoptimality of index policies with special structure inscheduling problems under admissible objectives, which weapply to the model of concern.
Resumo:
To understand whether retailers should consider consumer returns when merchandising, we study howthe optimal assortment of a price-taking retailer is influenced by its return policy. The retailer selects itsassortment from an exogenous set of horizontally differentiated products. Consumers make purchase andkeep/return decisions in nested multinomial logit fashion. Our main finding is that the optimal assortmenthas a counterintuitive structure for relatively strict return policies: It is optimal to offer a mix of the mostpopular and most eccentric products when the refund amount is sufficiently low, which can be viewed asa form of risk sharing between the retailer and consumers. In contrast, if the refund is sufficiently high, orwhen returns are disallowed, optimal assortment is composed of only the most popular products (a commonfinding in the literature). We provide preliminary empirical evidence for one of the key drivers of our results:more eccentric products have higher probability of return conditional on purchase. In light of our analyticalfindings and managerial insights, we conclude that retailers should take their return policies into accountwhen merchandising.
Resumo:
In this paper we study delegated portfolio management when themanager's ability to short-sell is restricted. Contrary to previousresults, we show that under moral hazard, linear performance-adjustedcontracts do provide portfolio managers with incentives to gatherinformation. The risk-averse manager's optimal effort is an increasingfunction of her share in the portfolio's return. This result affectsthe risk-averse investor's optimal contract decision. The first best,purely risk-sharing contract is proved to be suboptimal. Usingnumerical methods we show that the manager's share in the portfolioreturn is higher than the rst best share. Additionally, this deviationis shown to be: (i) increasing in the manager's risk aversion and (ii)larger for tighter short-selling restrictions. When the constraint isrelaxed the optimal contract converges towards the first best risksharing contract.