35 resultados para nitrogen implantation
Resumo:
Growth experiments showed that adenine and hypoxanthine can be used as nitrogen sources by several strains of K. pneumoniae under aerobic conditions. The assimilation of all nitrogens from these purines indicates that the catabolic pathway is complete and proceeds past allantoin. Here we identify the genetic system responsible for the oxidation of hypoxanthine to allantoin in K. pneumoniae. The hpx cluster consists of seven genes, for which an organization in four transcriptional units, hpxDE, hpxR, hpxO and hpxPQT, is proposed. The proteins involved in the oxidation of hypoxanthine (HpxDE) or uric acid (HpxO) did not display any similarity to other reported enzymes known to catalyze these reactions, but instead are similar to oxygenases acting on aromatic compounds. Expression of the hpx system is activated by nitrogen limitation and by the presence of specific substrates, with hpxDE and hpxPQT controlled by both signals. Nitrogen control of hpxPQT transcription, which depends on 54, is mediated by the Ntr system. In contrast, neither NtrC nor NAC is involved in the nitrogen control of hpxDE, which is dependent on 70 for transcription. Activation of these operons by the specific substrates is also mediated by different effectors and regulatory proteins. Induction of hpxPQT requires uric acid formation, whereas expression of hpxDE is induced by the presence of hypoxanthine through the regulatory protein HpxR. This LysR-type regulator binds to a TCTGC-N4-GCAAA site in the intergenic hpxD-hpxR region. When bound to this site for hpxDE activation, HpxR negatively controls its own transcription.
Resumo:
High-dose carbon-ion-implanted Si samples have been analyzed by infrared spectroscopy, Raman scattering, and x-ray photoelectron spectroscopy (XPS) correlated with transmission electron microscopy. Samples were implanted at room temperature and 500°C with doses between 1017 and 1018 C+/cm2. Some of the samples were implanted at room temperature with the surface covered by a capping oxide layer. Implanting at room temperature leads to the formation of a surface carbon-rich amorphous layer, in addition to the buried implanted layer. The dependence of this layer on the capping oxide suggests this layer to be determined by carbon migration toward the surface, rather than surface contamination. Implanting at 500°C, no carbon-rich surface layer is observed and the SiC buried layer is formed by crystalline ßSiC precipitates aligned with the Si matrix. The concentration of SiC in this region as measured by XPS is higher than for the room-temperature implantation.
Resumo:
Human activities have resulted in increased nutrient levels in many rivers all over Europe. Sustainable management of river basins demands an assessment of the causes and consequences of human alteration of nutrient flows, together with an evaluation of management options. In the context of an integrated and interdisciplinary environmental assessment (IEA) of nutrient flows, we present and discuss the application of the nutrient emission model MONERIS (MOdelling Nutrient Emissions into River Systems) to the Catalan river basin, La Tordera (north-east Spain), for the period 1996–2002. After a successful calibration and verification process (Nash-Sutcliffe efficiencies E=0.85 for phosphorus and E=0.86 for nitrogen), the application of the model MONERIS proved to be useful in estimating nutrient loads. Crucial for model calibration, in-stream retention was estimated to be about 50 % of nutrient emissions on an annual basis. Through this process, we identified the importance of point sources for phosphorus emissions (about 94% for 1996–2002), and diffuse sources, especially inputs via groundwater, for nitrogen emissions (about 31% for 1996–2002). Despite hurdles related to model structure, observed loads, and input data encountered during the modelling process, MONERIS provided a good representation of the major interannual and spatial patterns in nutrient emissions. An analysis of the model uncertainty and sensitivity to input data indicates that the model MONERIS, even in data-starved Mediterranean catchments, may be profitably used by water managers for evaluating quantitative nutrient emission scenarios for the purpose of managing river basins. As an example of scenario modelling, an analysis of the changes in nutrient emissions through two different future scenarios allowed the identification of a set of relevant measures to reduce nutrient loads.
Resumo:
Hyperlipidic diets limit glucose oxidation and favor amino acid preservation, hampering the elimination of excess dietary nitrogen and the catabolic utilization of amino acids.We analyzed whether reduced urea excretion was a consequence of higherNO ; (nitrite,nitrate, and other derivatives) availability caused by increased nitric oxide production in metabolic syndrome. Rats fed a cafeteria diet for 30 days had a higher intake and accumulation of amino acid nitrogen and lower urea excretion.There were no differences in plasma nitrate or nitrite. NO and creatinine excretion accounted for only a small part of total nitrogen excretion. Rats fed a cafeteria diet had higher plasma levels of glutamine, serine, threonine, glycine, and ornithinewhen comparedwith controls,whereas arginine was lower. Liver carbamoyl-phosphate synthetase I activity was higher in cafeteria diet-fed rats, but arginase I was lower. The high carbamoyl-phosphate synthetase activity and ornithine levels suggest activation of the urea cycle in cafeteria diet-fed rats, but low arginine levels point to a block in the urea cycle between ornithine and arginine, thereby preventing the elimination of excess nitrogen as urea. The ultimate consequence of this paradoxical block in the urea cycle seems to be the limitation of arginine production and/or availability.
Resumo:
The present paper studied the performance of the stable isotope signatures of carbon (δ13C), nitrogen (δ15N) and oxygen (δ18O) in plants when used to assess early vigour and grain yield (GY) in durum wheat growing under mild and moderate Mediterranean stress conditions. A collection of 114 recombinant inbred lines was grown under rainfed (RF) and supplementary irrigation (IR) conditions. Broad sense heritabilities (H2) for GY and harvest index (HI) were higher under RF conditions than under IR. Broad sense heritabilities for δ13C were always above 0·60, regardless of the plant part studied, with similar values for IR and RF trials. Some of the largest genetic correlations with GY were those shown by the δ13C content of the flag leaf blade and mature grains. Under both water treatments, mature grains showed the highest negative correlations between δ13C and GY across genotypes. Flag leaf δ13C was negatively correlated with GY only under RF conditions. The δ13C in seedlings was negatively correlated, under IR conditions only, with GY but also with early vigour. The sources of variation in early vigour were studied by stepwise analysis using the stable isotope signatures measured in seedlings. The δ13C was able to explain almost 0·20 of this variation under RF, but up to 0·30 under IR. In addition, nitrogen concentration in seedlings accounted for another 0·05 of variation, increasing the amount explained to 0·35. The sources of variation in GY were also studied through stable isotope signatures and biomass of different plant parts: δ13C was always the first parameter to appear in the models for both water conditions, explaining c. 0·20 of the variation. The second parameter (δ15N or N concentration of grain, or biomass at maturity) depended on the water conditions and the plant tissue being analysed. Oxygen isotope composition (δ18O) was only able to explain a small amount of the variation in GY. In this regard, despite the known and previously described value of δ13C as a tool in breeding, δ15N is confirmed as an additional tool in the present study. Oxygen isotope composition does not seem to offer any potential, at least under the conditions of the present study.