36 resultados para luminescence spectroscopy
Resumo:
In recent years, there has been an increased attention towards the composition of feeding fats. In the aftermath of the BSE crisis all animal by-products utilised in animal nutrition have been subjected to close scrutiny. Regulation requires that the material belongs to the category of animal by-products fit for human consumption. This implies the use of reliable techniques in order to insure the safety of products. The feasibility of using rapid and non-destructive methods, to control the composition of feedstuffs on animal fats has been studied. Fourier Transform Raman spectroscopy has been chosen for its advantage to give detailed structural information. Data were treated using chemometric methods as PCA and PLS-DA which have permitted to separate well the different classes of animal fats. The same methodology was applied on fats from various types of feedstock and production technology processes. PLS-DA model for the discrimination of animal fats from the other categories presents a sensitivity and a specificity of 0.958 and 0.914, respectively. These results encourage the use of FT-Raman spectroscopy to discriminate animal fats.
Resumo:
We report optical spectroscopic observations of a sample of 6 low-galactic latitude microquasar candidates selected by cross-identification of X-ray and radio point source catalogs for |b|<5 degrees. Two objects resulted to be of clear extragalactic origin, as an obvious cosmologic redshift has been measured from their emission lines. For the rest, none exhibits a clear stellar-like spectrum as would be expected for genuine Galactic microquasars. Their featureless spectra are consistent with being extragalactic in origin although two of them could be also highly reddened stars. The apparent non-confirmation of our candidates suggests that the population of persistent microquasar systems in the Galaxy is more rare than previously believed. If none of them is galactic, the upper limit to the space density of new Cygnus X-3-like microquasars within 15 kpc would be 1.1\times10^{-12} per cubic pc. A similar upper limit for new LS 5039-like systems within 4 kpc is estimated to be 5.6\times10^{-11} per cubic pc.
Resumo:
Recent mineralogical studies on archaeological pottery samples report significant variations in alkali metal concentrations due to environmental alterations during burial. Here we examine the effects of potassium (K) leaching on luminescence dating. The effect on the estimation of the dose rate is studied by considering four models of leaching (exponential, linear, early and late) and their impact on fine- and coarse-grain dating are calculated. The modeling approaches are applied to two cases of pottery in which evidence for alteration was found. Additionally, TL dating performed on pottery of one of the studied cases, indicates the importance of leaching effects on absolute dating measurements.
Resumo:
We report on a field-effect light emitting device based on silicon nanocrystals in silicon oxide deposited by plasma-enhanced chemical vapor deposition. The device shows high power efficiency and long lifetime. The power efficiency is enhanced up to 0.1 %25 by the presence of a silicon nitride control layer. The leakage current reduction induced by this nitride buffer effectively increases the power efficiency two orders of magnitude with regard to similarly processed devices with solely oxide. In addition, the nitride cools down the electrons that reach the polycrystalline silicon gate lowering the formation of defects, which significantly reduces the device degradation.
Resumo:
We investigate the shot noise of nonequilibrium carriers injected into a ballistic conductor and interacting via long-range Coulomb forces. Coulomb interactions are shown to act as an energy analyzer of the profile of injected electrons by means of the fluctuations of the potential barrier at the emitter contact. We show that the details in the energy profile can be extracted from shot-noise measurements in the Coulomb interaction regime, but cannot be obtained from time-averaged quantities or shot-noise measurements in the absence of interactions.
Resumo:
A thorough critical analysis of the theoretical relationships between the bond-angle dispersion in a-Si, Δθ, and the width of the transverse optical Raman peak, Γ, is presented. It is shown that the discrepancies between them are drastically reduced when unified definitions for Δθ and Γ are used. This reduced dispersion in the predicted values of Δθ together with the broad agreement with the scarce direct determinations of Δθ is then used to analyze the strain energy in partially relaxed pure a-Si. It is concluded that defect annihilation does not contribute appreciably to the reduction of the a-Si energy during structural relaxation. In contrast, it can account for half of the crystallization energy, which can be as low as 7 kJ/mol in defect-free a-Si