105 resultados para linkitetty data
Resumo:
We take stock of the present position of compositional data analysis, of what has beenachieved in the last 20 years, and then make suggestions as to what may be sensibleavenues of future research. We take an uncompromisingly applied mathematical view,that the challenge of solving practical problems should motivate our theoreticalresearch; and that any new theory should be thoroughly investigated to see if it mayprovide answers to previously abandoned practical considerations. Indeed a main themeof this lecture will be to demonstrate this applied mathematical approach by a number ofchallenging examples
Resumo:
Traditionally, compositional data has been identified with closed data, and the simplex has been considered as the natural sample space of this kind of data. In our opinion, the emphasis on the constrained nature ofcompositional data has contributed to mask its real nature. More crucial than the constraining property of compositional data is the scale-invariant property of this kind of data. Indeed, when we are considering only few parts of a full composition we are not working with constrained data but our data are still compositional. We believe that it is necessary to give a more precisedefinition of composition. This is the aim of this oral contribution
Resumo:
A version of Matheron’s discrete Gaussian model is applied to cell composition data.The examples are for map patterns of felsic metavolcanics in two different areas. Q-Qplots of the model for cell values representing proportion of 10 km x 10 km cell areaunderlain by this rock type are approximately linear, and the line of best fit can be usedto estimate the parameters of the model. It is also shown that felsic metavolcanics in theAbitibi area of the Canadian Shield can be modeled as a fractal
Resumo:
We compare correspondance análisis to the logratio approach based on compositional data. We also compare correspondance análisis and an alternative approach using Hellinger distance, for representing categorical data in a contingency table. We propose a coefficient which globally measures the similarity between these approaches. This coefficient can be decomposed into several components, one component for each principal dimension, indicating the contribution of the dimensions to the difference between the two representations. These three methods of representation can produce quite similar results. One illustrative example is given
Resumo:
The application of compositional data analysis through log ratio trans-formations corresponds to a multinomial logit model for the shares themselves.This model is characterized by the property of Independence of Irrelevant Alter-natives (IIA). IIA states that the odds ratio in this case the ratio of shares is invariant to the addition or deletion of outcomes to the problem. It is exactlythis invariance of the ratio that underlies the commonly used zero replacementprocedure in compositional data analysis. In this paper we investigate using thenested logit model that does not embody IIA and an associated zero replacementprocedure and compare its performance with that of the more usual approach ofusing the multinomial logit model. Our comparisons exploit a data set that com-bines voting data by electoral division with corresponding census data for eachdivision for the 2001 Federal election in Australia
Resumo:
This analysis was stimulated by the real data analysis problem of householdexpenditure data. The full dataset contains expenditure data for a sample of 1224 households. The expenditure is broken down at 2 hierarchical levels: 9 major levels (e.g. housing, food, utilities etc.) and 92 minor levels. There are also 5 factors and 5 covariates at the household level. Not surprisingly, there are a small number of zeros at the major level, but many zeros at the minor level. The question is how best to model the zeros. Clearly, models that tryto add a small amount to the zero terms are not appropriate in general as at least some of the zeros are clearly structural, e.g. alcohol/tobacco for households that are teetotal. The key question then is how to build suitable conditional models. For example, is the sub-composition of spendingexcluding alcohol/tobacco similar for teetotal and non-teetotal households?In other words, we are looking for sub-compositional independence. Also, what determines whether a household is teetotal? Can we assume that it is independent of the composition? In general, whether teetotal will clearly depend on the household level variables, so we need to be able to model this dependence. The other tricky question is that with zeros on more than onecomponent, we need to be able to model dependence and independence of zeros on the different components. Lastly, while some zeros are structural, others may not be, for example, for expenditure on durables, it may be chance as to whether a particular household spends money on durableswithin the sample period. This would clearly be distinguishable if we had longitudinal data, but may still be distinguishable by looking at the distribution, on the assumption that random zeros will usually be for situations where any non-zero expenditure is not small.While this analysis is based on around economic data, the ideas carry over tomany other situations, including geological data, where minerals may be missing for structural reasons (similar to alcohol), or missing because they occur only in random regions which may be missed in a sample (similar to the durables)
Resumo:
Examples of compositional data. The simplex, a suitable sample space for compositional data and Aitchison's geometry. R, a free language and environment for statistical computing and graphics
Resumo:
Compositional data naturally arises from the scientific analysis of the chemicalcomposition of archaeological material such as ceramic and glass artefacts. Data of thistype can be explored using a variety of techniques, from standard multivariate methodssuch as principal components analysis and cluster analysis, to methods based upon theuse of log-ratios. The general aim is to identify groups of chemically similar artefactsthat could potentially be used to answer questions of provenance.This paper will demonstrate work in progress on the development of a documentedlibrary of methods, implemented using the statistical package R, for the analysis ofcompositional data. R is an open source package that makes available very powerfulstatistical facilities at no cost. We aim to show how, with the aid of statistical softwaresuch as R, traditional exploratory multivariate analysis can easily be used alongside, orin combination with, specialist techniques of compositional data analysis.The library has been developed from a core of basic R functionality, together withpurpose-written routines arising from our own research (for example that reported atCoDaWork'03). In addition, we have included other appropriate publicly availabletechniques and libraries that have been implemented in R by other authors. Availablefunctions range from standard multivariate techniques through to various approaches tolog-ratio analysis and zero replacement. We also discuss and demonstrate a smallselection of relatively new techniques that have hitherto been little-used inarchaeometric applications involving compositional data. The application of the libraryto the analysis of data arising in archaeometry will be demonstrated; results fromdifferent analyses will be compared; and the utility of the various methods discussed
Resumo:
”compositions” is a new R-package for the analysis of compositional and positive data.It contains four classes corresponding to the four different types of compositional andpositive geometry (including the Aitchison geometry). It provides means for computation,plotting and high-level multivariate statistical analysis in all four geometries.These geometries are treated in an fully analogous way, based on the principle of workingin coordinates, and the object-oriented programming paradigm of R. In this way,called functions automatically select the most appropriate type of analysis as a functionof the geometry. The graphical capabilities include ternary diagrams and tetrahedrons,various compositional plots (boxplots, barplots, piecharts) and extensive graphical toolsfor principal components. Afterwards, ortion and proportion lines, straight lines andellipses in all geometries can be added to plots. The package is accompanied by ahands-on-introduction, documentation for every function, demos of the graphical capabilitiesand plenty of usage examples. It allows direct and parallel computation inall four vector spaces and provides the beginner with a copy-and-paste style of dataanalysis, while letting advanced users keep the functionality and customizability theydemand of R, as well as all necessary tools to add own analysis routines. A completeexample is included in the appendix
Resumo:
We shall call an n × p data matrix fully-compositional if the rows sum to a constant, and sub-compositional if the variables are a subset of a fully-compositional data set1. Such data occur widely in archaeometry, where it is common to determine the chemical composition of ceramic, glass, metal or other artefacts using techniques such as neutron activation analysis (NAA), inductively coupled plasma spectroscopy (ICPS), X-ray fluorescence analysis (XRF) etc. Interest often centres on whether there are distinct chemical groups within the data and whether, for example, these can be associated with different origins or manufacturing technologies
Resumo:
Presentation in CODAWORK'03, session 4: Applications to archeometry
Resumo:
Developments in the statistical analysis of compositional data over the last twodecades have made possible a much deeper exploration of the nature of variability,and the possible processes associated with compositional data sets from manydisciplines. In this paper we concentrate on geochemical data sets. First we explainhow hypotheses of compositional variability may be formulated within the naturalsample space, the unit simplex, including useful hypotheses of subcompositionaldiscrimination and specific perturbational change. Then we develop through standardmethodology, such as generalised likelihood ratio tests, statistical tools to allow thesystematic investigation of a complete lattice of such hypotheses. Some of these tests are simple adaptations of existing multivariate tests but others require specialconstruction. We comment on the use of graphical methods in compositional dataanalysis and on the ordination of specimens. The recent development of the conceptof compositional processes is then explained together with the necessary tools for astaying- in-the-simplex approach, namely compositional singular value decompositions. All these statistical techniques are illustrated for a substantial compositional data set, consisting of 209 major-oxide and rare-element compositions of metamorphosed limestones from the Northeast and Central Highlands of Scotland.Finally we point out a number of unresolved problems in the statistical analysis ofcompositional processes
Resumo:
R from http://www.r-project.org/ is ‘GNU S’ – a language and environment for statistical computingand graphics. The environment in which many classical and modern statistical techniques havebeen implemented, but many are supplied as packages. There are 8 standard packages and many moreare available through the cran family of Internet sites http://cran.r-project.org .We started to develop a library of functions in R to support the analysis of mixtures and our goal isa MixeR package for compositional data analysis that provides support foroperations on compositions: perturbation and power multiplication, subcomposition with or withoutresiduals, centering of the data, computing Aitchison’s, Euclidean, Bhattacharyya distances,compositional Kullback-Leibler divergence etc.graphical presentation of compositions in ternary diagrams and tetrahedrons with additional features:barycenter, geometric mean of the data set, the percentiles lines, marking and coloring ofsubsets of the data set, theirs geometric means, notation of individual data in the set . . .dealing with zeros and missing values in compositional data sets with R procedures for simpleand multiplicative replacement strategy,the time series analysis of compositional data.We’ll present the current status of MixeR development and illustrate its use on selected data sets
Resumo:
The statistical analysis of compositional data is commonly used in geological studies.As is well-known, compositions should be treated using logratios of parts, which aredifficult to use correctly in standard statistical packages. In this paper we describe thenew features of our freeware package, named CoDaPack, which implements most of thebasic statistical methods suitable for compositional data. An example using real data ispresented to illustrate the use of the package
Resumo:
The low levels of unemployment recorded in the UK in recent years are widely cited asevidence of the country’s improved economic performance, and the apparent convergence of unemployment rates across the country’s regions used to suggest that the longstanding divide in living standards between the relatively prosperous ‘south’ and the more depressed ‘north’ has been substantially narrowed. Dissenters from theseconclusions have drawn attention to the greatly increased extent of non-employment(around a quarter of the UK’s working age population are not in employment) and themarked regional dimension in its distribution across the country. Amongst these dissenters it is generally agreed that non-employment is concentrated amongst oldermales previously employed in the now very much smaller ‘heavy’ industries (e.g. coal,steel, shipbuilding).This paper uses the tools of compositiona l data analysis to provide a much richer picture of non-employment and one which challenges the conventional analysis wisdom about UK labour market performance as well as the dissenters view of the nature of theproblem. It is shown that, associated with the striking ‘north/south’ divide in nonemployment rates, there is a statistically significant relationship between the size of the non-employment rate and the composition of non-employment. Specifically, it is shown that the share of unemployment in non-employment is negatively correlated with the overall non-employment rate: in regions where the non-employment rate is high the share of unemployment is relatively low. So the unemployment rate is not a very reliable indicator of regional disparities in labour market performance. Even more importantly from a policy viewpoint, a significant positive relationship is found between the size ofthe non-employment rate and the share of those not employed through reason of sicknessor disability and it seems (contrary to the dissenters) that this connection is just as strong for women as it is for men