38 resultados para lead-time structure
Resumo:
Ecological studies on food webs rarely include parasites, partly due to the complexity and dimensionality of host-parasite interaction networks. Multiple co-occurring parasites can show different feeding strategies and thus lead to complex and cryptic trophic relationships, which are often difficult to disentangle by traditional methods. We analyzed stable isotope ratios of C (13C/12C, δ13C) and N (15N/14N, δ15N) of host and ectoparasite tissues to investigate trophic structure in 4 co-occurring ectoparasites: three lice and one flea species, on two closely related and spatially segregated seabird hosts (Calonectris shearwaters). δ13C isotopic signatures confirmed feathers as the main food resource for the three lice species and blood for the flea species. All ectoparasite species showed a significant enrichment in δ15N relatively to the host tissue consumed (discrimination factors ranged from 2 to 5 depending on the species). Isotopic differences were consistent across multiple host-ectoparasite locations, despite of some geographic variability in baseline isotopic levels. Our findings illustrate the influence of both ectoparasite and host trophic ecology in the isotopic structuring of the Calonectris ectoparasite community. This study highlights the potential of stable isotope analyses in disentangling the nature and complexity of trophic relationships in symbiotic systems.
Resumo:
Temporary streams are those water courses that undergo the recurrent cessation of flow or the complete drying of their channel. The structure and composition of biological communities in temporary stream reaches are strongly dependent on the temporal changes of the aquatic habitats determined by the hydrological conditions. Therefore, the structural and functional characteristics of aquatic fauna to assess the ecological quality of a temporary stream reach cannot be used without taking into account the controls imposed by the hydrological regime. This paper develops methods for analysing temporary streams' aquatic regimes, based on the definition of six aquatic states that summarize the transient sets of mesohabitats occurring on a given reach at a particular moment, depending on the hydrological conditions: Hyperrheic, Eurheic, Oligorheic, Arheic, Hyporheic and Edaphic. When the hydrological conditions lead to a change in the aquatic state, the structure and composition of the aquatic community changes according to the new set of available habitats. We used the water discharge records from gauging stations or simulations with rainfall-runoff models to infer the temporal patterns of occurrence of these states in the Aquatic States Frequency Graph we developed. The visual analysis of this graph is complemented by the development of two metrics which describe the permanence of flow and the seasonal predictability of zero flow periods. Finally, a classification of temporary streams in four aquatic regimes in terms of their influence over the development of aquatic life is updated from the existing classifications, with stream aquatic regimes defined as Permanent, Temporary-pools, Temporary-dry and Episodic. While aquatic regimes describe the long-term overall variability of the hydrological conditions of the river section and have been used for many years by hydrologists and ecologists, aquatic states describe the availability of mesohabitats in given periods that determine the presence of different biotic assemblages. This novel concept links hydrological and ecological conditions in a unique way. All these methods were implemented with data from eight temporary streams around the Mediterranean within the MIRAGE project. Their application was a precondition to assessing the ecological quality of these streams.
Resumo:
The visual angle that is projected by an object (e.g. a ball) on the retina depends on the object's size and distance. Without further information, however, the visual angle is ambiguous with respect to size and distance, because equal visual angles can be obtained from a big ball at a longer distance and a smaller one at a correspondingly shorter distance. Failure to recover the true 3D structure of the object (e.g. a ball's physical size) causing the ambiguous retinal image can lead to a timing error when catching the ball. Two opposing views are currently prevailing on how people resolve this ambiguity when estimating time to contact. One explanation challenges any inference about what causes the retinal image (i.e. the necessity to recover this 3D structure), and instead favors a direct analysis of optic flow. In contrast, the second view suggests that action timing could be rather based on obtaining an estimate of the 3D structure of the scene. With the latter, systematic errors will be predicted if our inference of the 3D structure fails to reveal the underlying cause of the retinal image. Here we show that hand closure in catching virtual balls is triggered by visual angle, using an assumption of a constant ball size. As a consequence of this assumption, hand closure starts when the ball is at similar distance across trials. From that distance on, the remaining arrival time, therefore, depends on ball's speed. In order to time the catch successfully, closing time was coupled with ball's speed during the motor phase. This strategy led to an increased precision in catching but at the cost of committing systematic errors.
Resumo:
We study the dynamics of shear-band formation and evolution using a simple rheological model. The description couples the local structure and viscosity to the applied shear stress. We consider in detail the Couette geometry, where the model is solved iteratively with the Navier-Stokes equation to obtain the time evolution of the local velocity and viscosity fields. It is found that the underlying reason for dynamic effects is the nonhomogeneous shear distribution, which is amplified due to a positive feedback between the flow field and the viscosity response of the shear thinning fluid. This offers a simple explanation for the recent observations of transient shear banding in time-dependent fluids. Extensions to more complicated rheological systems are considered.
Resumo:
Top predator loss is a major global problem, with a current trend in biodiversity loss towards high trophic levels that modifies most ecosystems worldwide. Most research in this area is focused on large-bodied predators, despite the high extinction risk of small-bodied freshwater fish that often act as apex consumers. Consequently, it remains unknown if intermittent streams are affected by the consequences of top-predators' extirpations. The aim of our research was to determine how this global problem affects intermittent streams and, in particular, if the loss of a small-bodied top predator (1) leads to a 'mesopredator release', affects primary consumers and changes whole community structures, and (2) triggers a cascade effect modifying the ecosystem function. To address these questions, we studied the topdown effects of a small endangered fish species, Barbus meridionalis (the Mediterranean barbel), conducting an enclosure/exclosure mesocosm experiment in an intermittent stream where B. meridionalis became locally extinct following a wildfire.We found that top predator absence led to 'mesopredator release', and also to 'prey release' despite intraguild predation, which contrasts with traditional food web theory. In addition, B. meridionalis extirpation changed whole macroinvertebrate community composition and increased total macroinvertebrate density. Regarding ecosystem function, periphyton primary production decreased in apex consumer absence. In this study, the apex consumer was functionally irreplaceable; its local extinction led to the loss of an important functional role that resulted in major changes to the ecosystem's structure and function. This study evidences that intermittent streams can be affected by the consequences of apex consumers' extinctions, and that the loss of small-bodied top predators can lead to large ecosystem changes. We recommend the reintroduction of small-bodied apex consumers to systems where they have been extirpated, to restore ecosystem structure and function.
Resumo:
Climate warming may lead to changes in the trophic structure and diversity of shallow lakes as a combined effect of increased temperature and salinity and likely increased strength of trophic interactions. We investigated the potential effects of temperature, salinity and fish on the plant-associated macroinvertebrate community by introducing artificial plants in eight comparable shallow brackish lakes located in two climatic regions of contrasting temperature: cold-temperate and Mediterranean. In both regions, lakes covered a salinity gradient from freshwater to oligohaline waters. We undertook day and night-time sampling of macroinvertebrates associated with the artificial plants and fish and free-swimming macroinvertebrate predators within artificial plants and in pelagic areas. Our results showed marked differences in the trophic structure between cold and warm shallow lakes. Plant-associated macroinvertebrates and free-swimming macroinvertebrate predators were more abundant and the communities richer in species in the cold compared to the warm climate, most probably as a result of differences in fish predation pressure. Submerged plants in warm brackish lakes did not seem to counteract the effect of fish predation on macroinvertebrates to the same extent as in temperate freshwater lakes, since small fish were abundant and tended to aggregate within the macrophytes. The richness and abundance of most plant-associated macroinvertebrate taxa decreased with salinity. Despite the lower densities of plant-associated macroinvertebrates in the Mediterranean lakes, periphyton biomass was lower than in cold temperate systems, a fact that was mainly attributed to grazing and disturbance by fish. Our results suggest that, if the current process of warming entails higher chances of shallow lakes becoming warmer and more saline, climatic change may result in a decrease in macroinvertebrate species richness and abundance in shallow lakes
Resumo:
We generalize to arbitrary waiting-time distributions some results which were previously derived for discrete distributions. We show that for any two waiting-time distributions with the same mean delay time, that with higher dispersion will lead to a faster front. Experimental data on the speed of virus infections in a plaque are correctly explained by the theoretical predictions using a Gaussian delay-time distribution, which is more realistic for this system than the Dirac delta distribution considered previously [J. Fort and V. Méndez, Phys. Rev. Lett.89, 178101 (2002)]
Resumo:
Non-typable Haemophilus influenzae (NTHi) is a Gram negative pathogen that causes acute respiratory infections and is associated with the progression of chronic respiratory diseases. Previous studies have established the existence of a remarkable genetic variability among NTHi strains. In this study we show that, in spite of a high level of genetic heterogeneity, NTHi clinical isolates display a prevalent molecular feature, which could confer fitness during infectious processes. A total of 111 non-isogenic NTHi strains from an identical number of patients, isolated in two distinct geographical locations in the same period of time, were used to analyse nine genes encoding bacterial surface molecules, and revealed the existence of one highly prevalent molecular pattern (lgtF+, lic2A+, lic1D+, lic3A+, lic3B+, siaA−, lic2C+, ompP5+, oapA+) displayed by 94.6% of isolates. Such a genetic profile was associated with a higher bacterial resistance to serum mediated killing and enhanced adherence to human respiratory epithelial cells.